SCTA and Adsorbents

  • P. Llewellyn
  • F. Rouquerol
  • J. Rouquerol
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 3)


The preparation, characterisation and pre-treatment (or “outgassing”) of technological adsorbents (for gas adsorption, liquid adsorption or heterogeneous catalysis) was among the two first applications of Sample Controlled Thermal Analysis (SCTA) (the other being the study of phase changes in metallic alloys [1]) and it was the topic of most papers published about SCTA in the sixties (with the exception of one paper on sintering [2]). This interest is still as vivid as ever and can be explained by the fragility of the surface state and porous texture of a number of these materials and by the difficulty to obtain highly homogeneous and reproducible adsorbents at the end of a thermal treatment. We shall see, indeed, that SCTA, mainly in the form of Controlled Rate Thermal Analysis (CRTA) can provide a reproducible thermal pathway to a given adsorbent state, may this be during adsorbent preparation where it is possible to isolate interesting intermediate states, or whilst outgassing prior to the adsorption application in question. Such reproducibility is obtained due to the ability to control and thus minimise (if the rate of transformation or outgassing is fixed at a low value) both temperature and pressure gradients within each individual grain as well as in the sample bed. A control of the temperature gradient allows the minimisation of hotspots in the sample bed in case the sample heating auto-accelerates.


Pore Size Distribution Water Vapour Pressure Organic Template Control Rate Thermal Analysis Boehmite Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.S. Smith, Trans. A.I.M.E. (Metal Division) 137 (1940) 23.Google Scholar
  2. 2.
    H. Palmour, D.R. Johnson, in “Sintering and Related Phenomena”, G.C. Kuczynski, N.A. Hooton and C.F. Gibbon (Eds.), Gordon and Breach, New-York (1967) 779.Google Scholar
  3. 3.
    H.C. Stumpf, A.S. Russell, J.W. Newsome and C.H. Tucker, Ind. Eng. Chem. 42 (1950) 1398–1403.CrossRefGoogle Scholar
  4. 4.
    S.J. Gregg and K.S.W. Sing, J. Phys. Chem. 55 (1951) 592 & 597.CrossRefGoogle Scholar
  5. 5.
    J.H. de Boer, J.M.H. Fortuin and J.J. Steggerda, Kkl. Nederl. Akad. Wetensch. Proc., B., 57 (1954) 434.Google Scholar
  6. 6.
    D. Papée and R. Tertian, Bull. Soc. Chim. Fr., (1955) 983.Google Scholar
  7. 7.
    J. Rouquerol, Thesis, Faculty of Sciences of Paris University, 19th November 1964 (Série A, No. 4348, No. d’ordre 5199). Google Scholar
  8. 8.
    F. Rouquerol, Thesis, Faculty of Sciences of Paris University, 20th December 1965 (Série A, No. 4654, No. d’ordre 5501). Google Scholar
  9. 9.
    J. Rouquerol, J. Fraissard, J. Elston and B. Imelik, J. Chim. Phys., 4 (1966) 607.Google Scholar
  10. 10.
    J. Mayet, J. Rouquerol, J. Fraissard and B. Imelik, Bull. Soc. Chim. Fr., (1966), 2805–11.Google Scholar
  11. 11.
    J. Rouquerol, J. Therm. Anal., 2 (1970) 123.CrossRefGoogle Scholar
  12. 12.
    F. Rouquerol, J. Rouquerol and B. Imelik, Bull. Soc. Chim. Fr., 10 (1970) 3816.Google Scholar
  13. 13.
    M. Ganteaume and J. Rouquerol, J. Therm. Anal., 3 (1971) 413–20.CrossRefGoogle Scholar
  14. 14.
    J. Rouquerol, J. Thermal Analysis, 5 (1973) 203–16A.CrossRefGoogle Scholar
  15. 15.
    M. Ganteaume, Thesis, Université de Provence, Marseille, 24th February 1973.Google Scholar
  16. 16.
    J. Rouquerol, F. Rouquerol and M. Ganteaume, J. Catal., 36 (1975) 99–110A.CrossRefGoogle Scholar
  17. 17.
    J. Rouquerol and M. Ganteaume, J. Therm. Anal., 11 (1977) 201–210A.CrossRefGoogle Scholar
  18. 18.
    J. Rouquerol, F. Rouquerol and M. Ganteaume, J. Catal., 57 (1979) 222–30A.CrossRefGoogle Scholar
  19. 19.
    F. Paulik, J. Paulik, R. Naumann, R. Köhnke and D. Petzold, Thermochim. Acta, 64 (1983).Google Scholar
  20. 20.
    M.H. Stacey, Langmuir, 3 (1987) 681.CrossRefGoogle Scholar
  21. 21.
    B.C. Lippens and J.H. de Boer, J. Catal., 4 (1965) 319.CrossRefGoogle Scholar
  22. 22.
    F. Rouquerol, J. Rouquerol and K.S.W. Sing, “Adsorption by powders and porous solids: principles, methodology and applications”, Academic Press, London, New-York (1999) 467 pages.Google Scholar
  23. 23.
    E.A. Dawson, G.M.B. Parkes, P.A. Barnes, M.J. Chinn and P.R. Norman, Thermochim. Acta, 355 (1999) 141–146.CrossRefGoogle Scholar
  24. 24.
    J. Díaz-Terán, P. Llewellyn, J. Rouquerol, A.J. López-Peinado and A. Jerez, Proceedings of the 6th Meeting of the Spanish Carbon Group, 23–25 oct. 2001, Cáceres-Mérida, Spain.Google Scholar
  25. 25.
    C. Sauerland, P.L. Llewellyn, Y. Grillet and F. Rouquerol, In: Proceedings of the 12th Int. Zeolite Conference, (M.M.J. Treacy, B.K. Marcus, M.E. Bisher & J.B. Higgins (Eds.), MRS, Warrendale (USA), 1999, pp. 1707–1714.Google Scholar
  26. 26.
    J. Rouquerol, Thermochim. Acta, 144 (1989) 209.CrossRefGoogle Scholar
  27. 27.
    N. Dufau, L. Luciani, F. Rouquerol and P. Llewellyn, J. Mat. Chem., 11 (4) (2001) 1300–1304.CrossRefGoogle Scholar
  28. 28.
    K. Peters, R. Carleer, J. Mullens and E.F. Vansant, Microporous Materials, 4 (1995) 475.CrossRefGoogle Scholar
  29. 29.
    M.T.J. Keene, R. Gougeon, R. Denoyel, P.L. Llewellyn, R.K. Harris and J. Rouquerol, J. Mat. Chem., 9 (1999) 2843–2850.CrossRefGoogle Scholar
  30. 30.
    L. Sicard, P.L. Llewellyn, J. Patarin and F. Kolenda, Micro. Meso. Mat., 44–45 (2001) 195–201.CrossRefGoogle Scholar
  31. 31.
    V.I. Bogillo and P. Staszczuk, J. Therm. Anal. Cal., 55 (1999) 493–510.CrossRefGoogle Scholar
  32. 32.
    V. Chevrot, P.L. Llewellyn, F. Rouquerol, J. Godlewski and J. Rouquerol, Thermochim. Acta, 360 (2000) 77–83.CrossRefGoogle Scholar
  33. 33.
    J. Goworek, W. Stefaniak and A. Dabrowski, Thermochim. Acta, 259 (1995) 87–94.CrossRefGoogle Scholar
  34. 34.
    J. Goworek and W. Stefaniak, Colloids Surfaces A, 134 (1998) 343–347.CrossRefGoogle Scholar
  35. 35.
    H. Naono and M. Hakuman, J. Coll. Interf. Sci., 145 (1991) 405.CrossRefGoogle Scholar
  36. 36.
    J. Goworek and W. Stefaniak, Colloids Surfaces A, 80 (1993) 251–256.CrossRefGoogle Scholar
  37. 37.
    J. Goworek, W. Stefaniak and A. Dabrowski, Thermochim. Acta, 259 (1995) 87–94.CrossRefGoogle Scholar
  38. 38.
    P. Staszczuk, J. Therm. Anal., 53 (1998) 597–616.CrossRefGoogle Scholar
  39. 39.
    J. Goworek, W. Stefaniak and M. Prudaczuk, Thermochim. Acta, 379 (2001) 117–121.CrossRefGoogle Scholar
  40. 40.
    J. Goworek and W. Stefaniak, Thermochim. Acta, 286 (1996) 199–207.CrossRefGoogle Scholar
  41. 41.
    J. Kristóf, R.L. Frost, W.N. Martens and E. Horwáth, Langmuir, 18 (2002) 1244–1249.CrossRefGoogle Scholar
  42. 42.
    J. Goworek and W. Stefaniak, in “Thermal Analysis of Active Carbons”, p. 39–46.Google Scholar
  43. 43.
    Z. Hubicki, J. Goworek and W. Stefaniak, Bull. Pol. Acad. Sci. Chem., 42 (2) (1997) 169–176.Google Scholar
  44. 44.
    J. Goworek, W. Stefaniak and W. Zgrajka, Mat. Chem. Phys., 59 (1999) 149–153.CrossRefGoogle Scholar
  45. 45.
    J. Goworek and W. Stefaniak, Colloids Surfaces A, 82 (1994) 71–75.CrossRefGoogle Scholar
  46. 46.
    J. Rouquerol, S. Bordère and F. Rouquerol, in “Thermal Analysis in the Geosciences”, W. Smykatz-Kloss, S. St. J. Warne (Eds.), Springer-Verlag, Berlin, 1991, pp. 134–150.CrossRefGoogle Scholar
  47. 47.
    J. Godlewski, A. Giordano, V. Chevrot, P. Llewellyn, F. Rouquerol and J. Rouquerol, CEA Technical Note No. DEC/SECA/LCG/98.003, June 1998.Google Scholar
  48. 48.
    M.J. Torralvo, Y. Grillet, F. Rouquerol and J. Rouquerol, J. Therm. Anal., 41 (1994) 1529.CrossRefGoogle Scholar
  49. 49.
    P.A. Barnes, G.M.B. Parkes, D.R. Brown and E.L. Charsley, Thermochim. Acta, 269/270 (1995) 665.CrossRefGoogle Scholar
  50. 50.
    F. Villiéras, L.J. Michot, G. Gérard, J.M. Cases and W. Rudzinski, J. Therm. Anal. & Cal., 55 (1999) 511–530.CrossRefGoogle Scholar
  51. 51.
    E.A. Fesenko, P.A. Barnes, G.M.B. Parkes, D.R. Brown and M. Naderi, J. Phys. Chem. B, 105 (2001) 6178–6185.CrossRefGoogle Scholar
  52. 52.
    L.J. Michot, F. Didier, F. Villiéras and J.M. Cases, Pol. J. Chem., (1997) 665–678.Google Scholar
  53. 53.
    J. Rivera-Utrilla, M.A. Ferro-Garcia, C. Moreno-Castilla, I. Baautista-Toledo and J.P. Joly, J. Chem. Soc. Farad. Trans. 91 (1995) 3213.CrossRefGoogle Scholar
  54. 54.
    M.A. Ferro-Garcia, J.P. Joly, J. Rivera-Utrilla and C. Moreno-Castilla, Langmuir, 11 (1995) 2648.CrossRefGoogle Scholar
  55. 55.
    J. Rouquerol, F. Rouquerol, M. Triaca and O. Cerclier, Thermochim. Acta, 85 (1985) 305.CrossRefGoogle Scholar
  56. 56.
    F. Rouquerol, J. Rouquerol, G. Thevand and M. Triaca, Surface Science, 162 (1985) 239.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • P. Llewellyn
    • 1
  • F. Rouquerol
    • 1
  • J. Rouquerol
    • 1
  1. 1.MADIREL LaboratoryCNRS-Université de ProvenceMarseilleFrance

Personalised recommendations