Continuous-Time Sigma-Delta for IF

  • F. Gerfers
  • Y. Manoli
  • M. Ortmanns
Chapter

Abstract

Deep submicron processing, the reduction of the supply voltage as well as the increasing packaging density and the overall low power requirements of integrated circuits and systems raise the demand for novel circuit and design techniques. An important building block of such a mixed-signal system is an analog-to-digital converter (ADC). A multitude of different ADC architectures were introduced over the past decades [1] [2] [3]. The field of application of a particular ADC depends on the achievable conversion speed, accuracy, susceptibility to circuit imperfections, power requirements etc.

Keywords

Loop Filter Switch Capacitor Noise Transfer Function Gain Error Clock Jitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Doernberg; D. A. Hodges, “A 10 — bit 5 Msample/sec CMOS 2-step flash ADC,” Proc. IEEE Custom Integrated Circuits Conf., pp. 18.6/1-18.6/4, 1988.Google Scholar
  2. [2]
    R. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters, Kluwer Academic Pub., 1994.Google Scholar
  3. [3]
    S. Northworthy; R. Schreier; G. Temes, Delta-Sigma Data Converters, IEEE Press, 1997.Google Scholar
  4. [4]
    P. Scholtens; M. Vertregt, “ 6b 1.6GSample/s flash ADC in 0.18μm CMOS using averaging termination,” Proc. IEEE Int. Solid-State Circuits Conf., pp. 128, 435, 2002.Google Scholar
  5. [5]
    R. Schreier; B. Zhang, “Delta-sigma modulators employing continuous-time circuitry,”, IEEE Trans. Circuits Syst. I, vol. 43, no. 4, pp. 324–332, April 1996.CrossRefGoogle Scholar
  6. [6]
    O. Shoaei, Continuous-Time Delta-Sigma A/D Converters for High Speed Applications, Ph.D. thesis, Carleton University, 1995.Google Scholar
  7. [7]
    J.A. Cherry; W. M. Snelgrove, “Excess Loop Delay in Continuous-Time Delta-Sigma Modulators,” IEEE Trans. Circuits Syst. II, vol. 46, no. 4, April 1999.Google Scholar
  8. [8]
    J. A. Cherry; W. M. Snelgrove, Continuous-time Delta-Sigma Modulators for highspeed A/D Conversion, Kluwer Academic Pub., 1999.Google Scholar
  9. [9]
    E.I. Jury, Theory and Applications of the Z-Transform Method, John Wiley & Sons, 1964.Google Scholar
  10. [10]
    H. Aboushady; E. de Lira Mendes; M. Dessouky; P. Loumeau, “A Current-Mode Cotinuous-time ΣΔ Modulator with delayed Return-to-Zero Feedback,” Proc. IEEE Int. Symp. on Circuits and Syst., vol. 1, pp. XX, Sep. 1999.Google Scholar
  11. [11]
    F. Gerfers; Y. Manoli., “A 1.5V Low-Power Third Order Continuous-Time Lowpass ΣΔ A/D Converters,” Proc. Int. Symp. on Low-Power Electronics and Design, pp. 219-221, July 2000.Google Scholar
  12. [12]
    M. Ortmanns; F. Gerfers; Y. Manoli, “Jitter insensitive Feedback DAC for Continuous-Time ΣΔ Modulators,” Proc. IEEE Int. Conf. on Electronics, Circuits and Syst., pp. 1049-1052, 2001.Google Scholar
  13. [13]
    M. Ortmanns; F. Gerfers; Y. Manoli, “On the synthesis of cascaded continuous-time ΣΔ Modulators,” Proc. IEEE Int. Sym. on Circuits and Syst., pp. 419-422, 2001.Google Scholar
  14. [14]
    G. Fischer; A. J. Davis, “Alternative topologies for sigma-delta modulators-a comparative study”, IEEE Trans. Circuits Syst. II, vol. 44, no. 10, pp. 789–797, Oct. 1997.CrossRefGoogle Scholar
  15. [15]
    A. Marques; V. Peluso; M. S. Steyaert; W. M. Sansen, “Optimal Parameters for ΔΣ Modulator Topologies,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 1232–1241, Sep. 1998.CrossRefGoogle Scholar
  16. [16]
    C.H. Lin; M. Ismail, “Synthesis and Analysis of High-Order Cascaded Continuous Time ΣΔ Modulators,” in Proc. Int. Conf on Electronics, Circuits and Systems, 1999, pp. 1693-1696.Google Scholar
  17. [17]
    F. Medeiro; B. Perez-Verdu; A. Rodriguez-Vázquez, Top-Down Design of high-performance Sigma-Delta Modulators, Kluwer Academic Pub., 1999.Google Scholar
  18. [18]
    F. Gerfers; M. Ortmanns; Y. Manoli, “A Design Strategy for Low-Voltage Low-Power Continuous-Time ΣΔ A/D Converters,” Design, Automation and Test Conf, pp. 361-368,2001.Google Scholar
  19. [19]
    J.F. Jensen; G. Raghavan; A.E. Cosand; R.H. Waiden, “A 3.2-ghz second-order delta-sigma modulator implemented in inp hbt technology,”, IEEE J. Solid-State Circuits, vol. 30, no. 10, pp. 1119–1127, Oct. 1995.CrossRefGoogle Scholar
  20. [20]
    M. Ortmanns; F. Geifers; Y. Manoli, “Successful Design of cascaded Continuous-time ΣΔ Modulators,” Proc. IEEE Int. Conf. on Electronics, Circuits and Syst., pp. 321-324, 2001.Google Scholar
  21. [21]
    N. Wongkomet, A Comparison of Continuous-Time and Discrete-Time Sigma-Delta Modulators, Master Thesis, University of California at Berkeley, 1995.Google Scholar
  22. [22]
    C. C. Enz; G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling and chopper stabilization,”, Proc. of the IEEE, vol. 84, no. 11, pp. 1584–1612, Nov. 1996.CrossRefGoogle Scholar
  23. [23]
    Friedel Gerfers; M. Ortmanns; Y. Manoli, “A 12-Bit Power Efficient Continuous-Time ΣΔ Modulator with 220μ W Power Consumption,” Proc. European Solid-State Circuits Conf, pp. 536-539, 2001.Google Scholar
  24. [24]
    B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 1999.Google Scholar
  25. [25]
    J.A. Cherry; W.M. Snelgrove, “Clock jitter and quantizer metastability in continuous-time delta-sigma modulators,” IEEE Trans. Circuits Syst. II, vol. 46, 1999.Google Scholar
  26. [26]
    H. Tao; L. Toth; J.M. Khoury, “Analysis of timing jitter in bandpass sigma-delta modulators,” IEEE Trans. Circuits Syst. II, vol. 46, 1999.Google Scholar
  27. [27]
    O. Oliaei; H. Aboushady, “Jitter Effects in Continuous Time ΣΔ Modulators with delayed Return-To-Zero Feedback,” in Proc. Int. Conf on Electronics, Circuits and Systems, 1998, pp. 351-354.Google Scholar
  28. [28]
    B.E. Boser; B.A. Wooley, “The design of sigma-delta modulation analog.to-digital converters,”, IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298–1308, Dec. 1988.CrossRefGoogle Scholar
  29. [29]
    R. E. Radke; A. Eshraghi; T. S. Fiez., “A 14-B, Current-Mode ΣΔ DAC Based Upon Rotated Data Weighted Averaging,” IEEE J. Solid-State Circuits, vol. 35, no. 8, August 2000.Google Scholar
  30. [30]
    Y. Matsuya; N. Yukhi; Y. Akazawa, “Digital Correction Technique for Multi-Stage Noise-Shaping with an RC-Analog Integrator,”, IEICE Trans. Elektron, vol. E77-C, no. 12, pp. 1912–1919, 1994.Google Scholar
  31. [31]
    X. Huang, Investigation of a Switched-Capacitor concept for Feedback DAC in high resolution CT ΣΔ modulators, Master Thesis, University of Saarland, Germany, 2000.Google Scholar
  32. [32]
    M. Ortmanns; F. Gerfers; Y. Manoli, “A Continuous-Time Sigma-Delta Modulator with Reduced Jitter Sensitivity,” in Proc. European Solid-State Circuits Conf, 2002, p. to be published.Google Scholar
  33. [33]
    F. Gerfers; K. M. Soh; M. Ortmanns; Y Manoli, “Figure of Merit based Design Strategy for low-power Continuous-Time ΣΔ Modulators,” Proc. IEEE Int. Sym. on Circuits and Syst., pp. 233-236, 2002.Google Scholar
  34. [34]
    Rudy J. Van De Plassche, “A Sigma-Delta Modulator as an A/D Converter,”, IEEE Trans. Circiuts Syst., vol. 25, no. 7, pp. 510–514, Juli 1978.CrossRefGoogle Scholar
  35. [35]
    J. C. Candy, “A use of double integration in sigma-delta modulation,” IEEE Trans. on Communications, vol. COM-33, pp. 249–258, Mar. 1985.CrossRefGoogle Scholar
  36. [36]
    R. Schreier; M. Snelgrove, “Stability in a sigma-delta modulator,” Int. Conference Acoustics, Speech, Signal Processing, vol. 3, pp. 1769–1772, 1991.Google Scholar
  37. [37]
    Rex T. Baird; Terri S. Fiez, “A Low Oversampling Ratio 14-b 500-kHz ΔΣ ADC with a Self-Calibrated Multibit DAC”, IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 312–320, Mãrz 1996.CrossRefGoogle Scholar
  38. [38]
    Y. Geerts; M. S. J. Steyaert; W. M. Sansen, “A high-performance multibit ΔΣ CMOS ADC,” IEEE J. Solid-State Circuits, vol. 35, pp. 1829–1840, Dec. 2000.CrossRefGoogle Scholar
  39. [39]
    F. Medeiro; B. Perez-Verdu; J. M. de la Rosa; A. Rodriguez-Vázquez, “Fourth-order cascade sc σδ modulators: A comparative study,”, IEEE Trans. Circuits Syst. I, vol. 45, no. 10, pp. 1041–1051, Oct. 1998.CrossRefGoogle Scholar
  40. [40]
    J. Bastos; A. M. Marques; M.J. Steyaert; W. Sansen., “A 12-Bit Intrinsic Accuracy High-Speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, no. 12, Dec. 1998.Google Scholar
  41. [41]
    G. Van der Plas; J. Vandenbussche; W. Sansen; M. Steyaert; G. Gielen., “A 14-Bit Intrinsic Accuracy Q 2 Random Walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, Dec. 1999.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • F. Gerfers
  • Y. Manoli
  • M. Ortmanns

There are no affiliations available

Personalised recommendations