Skip to main content

New Horizons in Cellular Therapies

  • Conference paper
Cellular Engineering and Cellular Therapies

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 38))

  • 65 Accesses

Abstract

The term ‘cellular therapy’ identifies a modality of medical treatment in which drugs are replaced with cells. Examples of classical cellular therapies that have been successfully used for decades include bone marrow or peripheral blood stem cell transplantation and red blood cell or platelet transfusion. Currently, the terms ‘cellular therapy’ are mostly used to identify rather sophisticated procedures in which well defined cell sub-populations undergo some degree of manipulation or engineering, such as positive and negative cell selection, exvivo expansion, gene modification, etc., under strict environmental control ensured in laboratory facilities known as ‘cell factories’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orkin SH, Zon LI. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 2002; 3:323–28.

    Article  PubMed  CAS  Google Scholar 

  2. Gluckman E, Broxmeyer HE, Adamson JW, Steven CE. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321:1174–78.

    Article  PubMed  CAS  Google Scholar 

  3. Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp Hematol 2000; 28:1197–205.

    Article  PubMed  CAS  Google Scholar 

  4. Lazzari L, Lucchi S, Rebulla P, et al. Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system. Br J Haematol 2001;112:397–404.

    Article  PubMed  CAS  Google Scholar 

  5. Lazzari L, Lucchi S, Montemurro T, et al. Evaluation of the effect of cryo-preservation on ex vivo expansion of haematopoietic progenitors from cord blood. Bone Marrow Transplant 2001;28:693–98.

    Article  PubMed  CAS  Google Scholar 

  6. Blundell MP, Demaison C, Brouns G, et al. Quality of repopulation in nono-bese diabetic severe combined immunodeficient mice engrafted with expanded cord blood CD34+ cells. Blood 1999; 94:3269 (letter).

    PubMed  CAS  Google Scholar 

  7. McNiece I, Kubegov D, Kerzic P, Shpall EJ, Gross S. Increased expansion and differentiation of cord blood products using a two-step expansion culture. Exp Hematol 2000;28:1181–86.

    Article  PubMed  CAS  Google Scholar 

  8. Shpall EJ, Quinones R, Giller R, et al. Transplantation of ex-vivo expanded cord blood. Biol Blood Marrow Transplant 2002;8:368–76.

    Article  PubMed  Google Scholar 

  9. Fernandez MN, Regidor C, Cabrera R, et al. Cord blood transplants: early recovery of neutrophils from co-transplanted sibling haploidentical progenitor cells and lack of engraftment of cultured cord blood cells, as ascertained by analysis of DNA polymorphisms. Bone Marrow Transplant. 2001;28:355–63.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528–30.

    Article  PubMed  CAS  Google Scholar 

  11. Bittner RE, Schofer C, Weipoltshammer K, et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol 1999;199: 391–96.

    Article  PubMed  CAS  Google Scholar 

  12. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401:390–94.

    PubMed  CAS  Google Scholar 

  13. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615–25.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficit after grafting into the ischemic brain of rats. Exp Neurol 2002;174:11–20.

    Article  PubMed  Google Scholar 

  15. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002;109:1291–302.

    PubMed  CAS  Google Scholar 

  16. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999;96: 10711–16.

    Article  PubMed  CAS  Google Scholar 

  17. Boitilla S, Alarcon P, Villaverde R, Aparicio P, Silva A, Martinez S. Haematopoietic progenitor cells from adult bone marrow differentiate into cells that express Oligodendroglia antigens in the neonatal mouse brain. Eur J Neurosci. 2002;15:575–82.

    Article  Google Scholar 

  18. Quirici N, Soligo D, Caneva L, et al. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 2001;115:186–94.

    Article  PubMed  CAS  Google Scholar 

  19. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002;109:337–46.

    PubMed  CAS  Google Scholar 

  20. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarc-ted myocardium. Nature 2001;410:701–05.

    Article  PubMed  CAS  Google Scholar 

  21. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929–33.

    Article  PubMed  CAS  Google Scholar 

  22. Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet 2001;357:279–80.

    Article  PubMed  CAS  Google Scholar 

  23. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 2002;115:2131–38.

    PubMed  CAS  Google Scholar 

  24. Sanchez-Ramos JR, Song S, Kamath SG, et al. Expression of neural markers in human umbilical cord blood. Exp Neurol 2001;171:109–15.

    Article  PubMed  CAS  Google Scholar 

  25. Murray CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996;98: 2512–23.

    Article  Google Scholar 

  26. Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002;34:241–49.

    Article  PubMed  CAS  Google Scholar 

  27. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001;98:10344–49.

    Article  PubMed  CAS  Google Scholar 

  28. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107:1395–402.

    Article  PubMed  CAS  Google Scholar 

  29. Nelson MA, Passed J, Frishman WH. Therapeutic angiogenesis: a new treatment modality for ischemic heart disease. Heart Dis 2000;2:314–25.

    PubMed  CAS  Google Scholar 

  30. Edelberg JM, Tang L, Hattori K, Lyden D, Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ Res 2002;90:89–93.

    Article  Google Scholar 

  31. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93–98.

    Article  PubMed  Google Scholar 

  32. Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders [Review]. Nat Neurosci 2000;3:537–44.

    Article  PubMed  CAS  Google Scholar 

  33. Freeman TB, Cicchetti F, Hauser RA, et al. Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci USA 2000;97:13877–82.

    Article  PubMed  CAS  Google Scholar 

  34. Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol 2001;155:733–38.

    Article  PubMed  CAS  Google Scholar 

  35. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999;283:534–37.

    Article  PubMed  CAS  Google Scholar 

  36. Morshead CM, Benveniste P, Iscove NN, Van der Kooy D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 2002;8:268–73.

    Article  PubMed  CAS  Google Scholar 

  37. Galli R, Borello U, Gritti A, et al. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 2000;3:986–91.

    Article  PubMed  CAS  Google Scholar 

  38. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297:2256–59.

    Article  PubMed  CAS  Google Scholar 

  39. Istituto Superiore di Sanità. Linee guida per l’avvio degli studi clinici di fase I/II con cellule umane viventi per la terapia cellulare somatica. Notiziario dell’Istituto Superiore di Sanità, Roma 1997.

    Google Scholar 

  40. Istituto Superiore di Sanità. Linee guida per l’ingegneria dei tessuti e la terapia cellulare. NISS, 1999;12.

    Google Scholar 

  41. European Agency for the evaluation of medicinal products. Points to consider on the manufacture and quality control of human somatic cell therapy medicinal products. CPMP/BWP/41450, London 2001.

    Google Scholar 

  42. US Department of Health and Human services — Center for Disease Control and National Institute of Health. Biosafety in microbiological and biomedical laboratories (BMBL), 4th edition. US Government Printing Office. Washington 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rebulla, P. et al. (2003). New Horizons in Cellular Therapies. In: Sibinga, C.T.S., De Leij, L.F.M.H. (eds) Cellular Engineering and Cellular Therapies. Developments in Hematology and Immunology, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3718-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3718-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5250-9

  • Online ISBN: 978-1-4757-3718-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics