Analyzing and Designing Photonic Crystals

  • Susumu Noda
  • Toshihiko Baba


In this chapter, various methods for analyzing and designing photonic crystals are introduced. Since the possibility of controlling spontaneous emission using the PBG was first discussed in 1987, development of the methods for analyzing photonic crystals has progressed rapidly. In particular, the foundation for photonic crystal analysis has been strengthened by the work of theoretical researchers of solid state physics, including research groups individually headed by Leung, Zhang and Ho. They used the plane wave expansion (PWE) method to calculate energy bands, which is an optical version similar to the method used in solid state physics. In 1990, using this PWE method, Ho et al. calculated the band configuration of a diamond structure, and first showed that it is possible to obtain a complete PBG. In addition to the calculation of PBGs, the PWE can be applied to analyze the other aspects of photonic crystals, which have been discussed in Sections 2.4 and 2.5 as band engineering. The PWE calculation provides the contour map of frequency called the dispersion surface. It is the analogy to the Fermi surface of the electron system. In addition to providing a basic physical understanding of these phenomena, this technique is of general use in a wide range of application fields.


Photonic Crystal Photonic Crystal Fiber Triangular Lattice Effective Refractive Index Perfect Matched Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    Ze Zhang and S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    K. M. Ho, C. T. Chan and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    P. R. Villeneuve and M. Piché, Prog. Quantum Electron. 18, 153 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, 1995.zbMATHGoogle Scholar
  6. 6.
    E. Yablonovitch, T. J. Gmitter and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    K. Sakoda, Phys. Rev. B 52, 7982 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, Phys. Rev. B 58, 10096 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).ADSCrossRefGoogle Scholar
  10. 1.
    D. Felbacq, G. Tayeb and D. Maystre: J. Opt. Soc. Am. A11, 2526 (1994).MathSciNetADSCrossRefGoogle Scholar
  11. 2.
    G. O. Olaofe, Radio Science 5, 1351 (1970).ADSCrossRefGoogle Scholar
  12. 3.
    H. A. Yousif and S. Köhler, J. Opt. Soc. Am. A5, 1085 (1988).ADSCrossRefGoogle Scholar
  13. 4.
    G. Tayeb and D. Maystre: J. Opt. Soc. Am. A14, 3323 (1997).ADSCrossRefGoogle Scholar
  14. 5.
    J. Yonekura, M. Ikeda and T. Baba, J. Lightwave Technol. 17, 1500 (1999).ADSCrossRefGoogle Scholar
  15. 1.
    Although there are numerous text-books available, the following book covers almost all of the techniques: A. Taflove, S. C. Hagness (Ed.), Computational Electrodynamics: The Finite-Difference Time-Domain Method — 2nd Ed., Artech House Publishers, 2000.zbMATHGoogle Scholar
  16. 2.
    C. T. Chan, Q. L. Yu and K. M. Ho, Phys. Rev. B 51, 16635 (1995).ADSCrossRefGoogle Scholar
  17. 3.
    T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002). There are many calculated examples like this available.ADSCrossRefGoogle Scholar
  18. 4.
    P. Tran: Opt. Lett. 21 (1996) 1138.ADSCrossRefGoogle Scholar
  19. 5.
    T. Baba and T. Iwai, Jpn. J. Appl. Phys. 42, (2003).Google Scholar
  20. 1.
    J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, J. Opt. Soc. Am. A 15, 748 (1998).ADSCrossRefGoogle Scholar
  21. 2.
    A. Ferrando, E. Silvester, I. J. Miret, P. Andres, and M. V. Andres, Opt. Lett. 25, 276 (1999).ADSCrossRefGoogle Scholar
  22. 3.
    T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Modeling large air fraction holey optical fibers”, J. Lightwave Technol. 18, 50 (2000).ADSCrossRefGoogle Scholar
  23. 4.
    M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, Opt. Lett. 26, 488 (2001).ADSCrossRefGoogle Scholar
  24. 5.
    F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).ADSCrossRefGoogle Scholar
  25. 6.
    T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, Proc. Opt. Fiber Commun. Conf., PD5–1 (2001).Google Scholar
  26. 7.
    M. Koshiba and K Saitoh, IEEE Photon. Technol. Lett. 13, 1313 (2001).ADSCrossRefGoogle Scholar
  27. 8.
    K. Saitoh and M. Koshiba, IEEE J. Quantum Electron., submitted for publication.Google Scholar
  28. 9.
    H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, Proc. Conference on Laser and Electro-Optics, CPD3–1 (2001).Google Scholar
  29. 10.
    G. E. Town and J. T. Lizier, Opt. Lett. 26, 1042 (2001).ADSCrossRefGoogle Scholar
  30. 11.
    J. T. Lizier and G. E. Town, IEEE Photon. Technol. Lett. 13, 794 (2001).ADSCrossRefGoogle Scholar
  31. 12.
    M. Qiu, Microwave Opt. Technol. Lett. 30, 327 (2001).CrossRefGoogle Scholar
  32. 13.
    F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, Opt. Expr. 10, 54 (2002).ADSCrossRefGoogle Scholar
  33. 14.
    J. Broeng, D. Mogilevstev, S. E. Bárkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).ADSCrossRefGoogle Scholar
  34. 15.
    T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, IEICE Trans. Electron. E84-C, 585 (2001).Google Scholar
  35. 16.
    M. Koshiba, IEICE Trans. Electron., accepted for publication.Google Scholar
  36. 17.
    M. Koshiba and Y. Tsuji, J. Lightwave Technol. 18, 737 (2000).ADSCrossRefGoogle Scholar
  37. 18.
    M. J. Steel and R. M. Osgood, Jr., Opt. Lett. 26, 229 (2001).ADSCrossRefGoogle Scholar
  38. 19.
    D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, Opt. Commun. 192, 219 (2001).ADSCrossRefGoogle Scholar
  39. 20.
    J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Susumu Noda
    • 1
  • Toshihiko Baba
    • 2
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Yokohama National UniversityYokohamaJapan

Personalised recommendations