Physical and Experimental Background of Photonic Crystals

  • Susumu Noda
  • Toshihiko Baba


Nearly fifteen years have passed since the study of photonic crystals first commenced. Initially, this study was undertaken as it was seen as an interesting new area in physics. In the last five years, an increasing number of studies have been carried out on device applications in applied physics and engineering in addition to fundamental studies since a breakthrough on the realization of photonic crystals in optical regime has been achieved. The unique properties of photonic crystals have also led to their studies being recognized as a new and major field in optoelectronics. Moreover, study of the physics of photonic crystals continues to grow, drawing on many other scientific fields such as radio techniques, chemistry, precision machinery, acoustics, and so on. This chapter chronologically introduces the milestones reached in the study and development of photonic crystals, as well as some of their physical background.


Photonic Crystal Finite Difference Time Domain Negative Refractive Index Opal Crystal Photonic Crystal Slab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ohtaka, Phys. Rev. B 19, 5057 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    A Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    S. John, Phys. Rev. Lett. 58, 2486 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    E. M. Purcell, Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  6. 6.
    K. M. Leung, and Y. F. Liu, Phys. Rev. Lett. 65, 2646 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    J. B. Pendry, and A. MacKinnon, Phys. Rev. Lett. 69, 2772 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    C. M. Bowden, and J. P. Dowling, Eds., Special issue on development and applications of materials exhibiting photonic band gaps, J. Opt. Soc. Am. B 10–2, 283 (1993).Google Scholar
  11. 11.
    K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and R. Sigalas, Solid State Commun. 89, 413 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. Soukoulis, C. T. Chan and K. M. Ho, Phys. Rev. B 59, 1945 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press (1995).zbMATHGoogle Scholar
  14. 14.
    K. Sakoda, Phys. Rev. B 52, 7982 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    G. Tayeb, and D. Maystre, J. Opt. Soc. Am. A11, 2526 (1997).MathSciNetGoogle Scholar
  18. 18.
    C. C Cheng, A. Scherer, V. A. Engels, and E. Yablonovitch, J. Vac. Sci. Technol. B 14, 4110 (1996).CrossRefGoogle Scholar
  19. 19.
    S. Noda, N. Yamamoto, and A. Sasaki, Jpn. J. Appl. Phys. 35, 909 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, Appl. Phys. Lett. 64, 687 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    T. K. Krauss, Y. P. Song, S. Thorns, C. D. W. Wilkinson, and R. M. DeLaRue, Electron. Lett. 30, 1444 (1994).CrossRefGoogle Scholar
  22. 22.
    T. K. Krauss, R. De La Rue, and S. Band, Nature 383, 699 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    T. Baba, and T. Matsuzaki, Electron. Lett. 31, 1776 (1995).CrossRefGoogle Scholar
  24. 24.
    K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, Jpn. J. Appl. Phys. 33, L1463 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    U. Griming, V. Lehmann, and C. M. Engelhardt, Appl. Phys. Lett. 66, 3254 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    H. Masuda, and K. Fukuda, Science 268, 1466 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    M. Sigalas, C. Chan, K. M. Ho, and C. Soukoulis, Phys. Rev. B 52, 11744 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    E. R. Brown, and O. B. McMahon, Appl. Phys. Lett. 67, 2138 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, Phys. Rev. Lett. 76, 2480 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    S. Noda, N. Yamamoto, H. Kobayashi, M. Okano, and K. Tomoda, Appl. Phys. Lett. 75, 905 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).ADSCrossRefGoogle Scholar
  33. 33.
    A. Chutinan, and S. Noda, Appl. Phys. Lett. 75, 3739 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    J. G. Fleming, and S. Y. Lin, Opt. Lett. 24, 49 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    A. Chutinan and S. Noda, Phys. Rev. B 57, R2006 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    O. Loader and S. John, Science 292, 1133 (2001).CrossRefGoogle Scholar
  37. 37.
    S. G. Johnson, and J. D. Joannopoulos, Appl. Phys. Lett. 77, 3490 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    M. Notomi, T. Tamamura, T. Kawashima and S. Kawakami, Appl. Phys. Lett. 77, 4256 (2000).ADSCrossRefGoogle Scholar
  39. 39.
    S. G. Romanov, A. V. Fokin, V. V. Tretijakov, V. Y. Butko, V. L Alperovich, N. P. Johnson, and C. M. Sotormayor Torres, J. Crystal Growth 159, 857 (1996).ADSCrossRefGoogle Scholar
  40. 40.
    H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, Appl. Phys. Lett. 71, 1148 (1997).ADSCrossRefGoogle Scholar
  41. 41.
    K. Yoshino, K. Tada, M. Ozaki, A. A. Zakhidov, and R. H. Baughman, Jpn. J. Appl. Phys. 36, L714 (1997).ADSCrossRefGoogle Scholar
  42. 42.
    J. E. G. J. Wijnhoven, and W. L. Vos, Science 281, 802 (1998).ADSCrossRefGoogle Scholar
  43. 43.
    Y. A. Vlasov, X. Z. Bo, J. C. Stum, and D. J. Norris, Nature 414, 289 (2001).ADSCrossRefGoogle Scholar
  44. 44.
    H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, J. Appl. Phys. 87, 7152 (2000).ADSCrossRefGoogle Scholar
  45. 45.
    S. Kawakami, Electron. Lett. 34, 1260 (1997).CrossRefGoogle Scholar
  46. 46.
    S. Shoji, and S. Kawata, Appl. Phys. Lett. 76, 2668 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    H. B. Son, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).ADSCrossRefGoogle Scholar
  48. 48.
    M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).ADSCrossRefGoogle Scholar
  49. 49.
    O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).CrossRefGoogle Scholar
  50. 50.
    J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, Appl. Phys. Lett. 76, 2982 (2000).ADSCrossRefGoogle Scholar
  51. 51.
    M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl. Phys. Lett. 75, 316 (1999).ADSCrossRefGoogle Scholar
  52. 52.
    S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Science 293, 1123 (2001).ADSCrossRefGoogle Scholar
  53. 53.
    M. Meier, A. Mekis, A. Dodabolapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, Appl. Phys. Lett. 74, 7 (1999).ADSCrossRefGoogle Scholar
  54. 54.
    S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, Phys. Rev. Lett. 78, 3294 (1997).ADSCrossRefGoogle Scholar
  55. 55.
    T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 27, 654 (1999).CrossRefGoogle Scholar
  56. 56.
    A. Chutinan, and S. Noda, Phys. Rev. B 62, 4488 (2000).ADSCrossRefGoogle Scholar
  57. 57.
    H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, J. Lightwave Technol. 17, 2063 (1999).ADSCrossRefGoogle Scholar
  58. 58.
    A. Yariv, Y. Xu, and R. K. Lee, A. Scherer, Opt. Lett. 24,711 (1999).ADSCrossRefGoogle Scholar
  59. 59.
    S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).ADSCrossRefGoogle Scholar
  60. 60.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).ADSCrossRefGoogle Scholar
  61. 61.
    P. St. J. Russell, and T. B. Birks, Photonic Band Gap Materials (Ed. by C. M. Soukoulis), Kluwer Academic, 71 (1996).Google Scholar
  62. 62.
    M. Notomi, Phys. Rev. B 62, 10696 (2000).ADSCrossRefGoogle Scholar
  63. 63.
    V. Berger, Phys. Rev. Lett. 81, 4136 (1998).ADSCrossRefGoogle Scholar
  64. 64.
    N. G. R. Broderiok, G. W. Ross, H. L. Offerhaus, D. J. Richerdson and D. C Hanna, Phys. Rev. Lett. 84, 4345 (2000).ADSCrossRefGoogle Scholar
  65. 65.
    R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C Allan, Science 285, 1537 (1999).CrossRefGoogle Scholar
  66. 66.
    T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Susumu Noda
    • 1
  • Toshihiko Baba
    • 2
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Yokohama National UniversityYokohamaJapan

Personalised recommendations