Skip to main content

Balloon Kyphoplasty

  • Chapter
Percutaneous Vertebroplasty

Abstract

Percutaneous vertebroplasty (PV) reportedly achieves relief of pain from vertebral compression fractures (VCFs) in 70 to 90% of cases,1–4 but it does not address the kyphotic deformity that typically results from VCFs. Kyphosis can cause difficulties on multiple fronts. Biomechanically, kyphosis shifts the patient’s center of gravity forward, rendering the patient off-balance and at increased risk for a fall and subsequent and potentially more debilitating injury. A change in a patient’s center of gravity also creates additional stress on the vertebrae, increasing the risk of fracture.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galibert P, Deramond H, Rosat P, et al. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty.] Neurochirurgie 1987; 33(2):166–168.

    PubMed  CAS  Google Scholar 

  2. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. Am J Neuroradiol 1997; 18(10):1897–1904.

    PubMed  CAS  Google Scholar 

  3. Gangi A, Kastler BA, Dietemann JL. Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. Am J Neuroradiol 1994; 15(l):83–86.

    PubMed  CAS  Google Scholar 

  4. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 1996; 200(2)525–530.

    PubMed  CAS  Google Scholar 

  5. White AA, Panjabi MM. Clinical Biomechanics of the Spine. 2nd ed. Philadelphia: JB Lippincott Co; 1990.

    Google Scholar 

  6. Schlaich C, Minne HW, Bruckner T, et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 1998; 8(3):261–271.

    Article  PubMed  CAS  Google Scholar 

  7. Leech JA, Dulberg C, Kellie S, et al. Relationship of lung function to severity of osteoporosis in women. Am Rev Respir Dis 1990; 141(1): 68–71.

    PubMed  CAS  Google Scholar 

  8. Silverman SL. The clinical consequences of vertebral compression fracture. Bone 1992; 13(suppl2):S27-S31.

    Article  Google Scholar 

  9. Cooper C, Atkinson EJ, O’Fallon WM, et al. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 1992; 7(2):221–227.

    Article  PubMed  CAS  Google Scholar 

  10. Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1999; 159(11): 1215–1220.

    Article  PubMed  CAS  Google Scholar 

  11. Lieberman IH, Dudeney S, Reinhardt M-K, et al. Initial outcome and efficacy of kyphoplasty in the treatment of painful osteoporotic vertebral compression fractures. Spine 2001; 26(14):1631–1638.

    Article  PubMed  CAS  Google Scholar 

  12. Theodorou DJ, Wong WH, Duncan TD, et al. Percutaneous balloon kyphoplasty: a novel technique for reducing pain and spinal deformity associated with osteoporotic vertebral compression fractures [abstract]. Radiology 2000; 217(suppl):511.

    Google Scholar 

  13. Lane JM, Girardi F, Parvaianen H, et al. Preliminary outcomes of the first 226 consecutive kyphoplasties for the fixation of painful osteoporotic vertebral compression fractures [abstract]. Osteoporosis Int 2000; (suppl):11:S206.

    Article  Google Scholar 

  14. Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine 2001; 26(2):151–156.

    Article  PubMed  CAS  Google Scholar 

  15. Wilson DR, Myers ER, Mathis JM, et al. Effect of augmentation on the mechanics of vertebral wedge fractures. Spine 2000; 25(2):158–165.

    Article  PubMed  CAS  Google Scholar 

  16. Lyles KW, Gold DT, Shipp KM, et al. Association of osteoporotic vertebral compression fractures with impaired functional status. Am J Med 1993; 94(6):595–601.

    Article  PubMed  CAS  Google Scholar 

  17. Leidig-Bruckner G, Minne HW, Schlaich C, et al. Clinical grading of spinal osteoporosis: quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Miner Res 1997; 12(4):663–675.

    Article  PubMed  CAS  Google Scholar 

  18. Nelson DA, Kleerekoper M, Peterson EL. Reversal of vertebral deformities in osteoporosis: measurement error or “rebound”? J Bone Miner Res 1994; 9(7):977–982.

    Article  PubMed  CAS  Google Scholar 

  19. Schildhauer TA, Bennett AP, Wright TM, et al. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique. J Orthop Res 1999; 17(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  20. Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 2000; 25(9): 1061–1064.

    Article  PubMed  CAS  Google Scholar 

  21. Mermelstein LE, McLain RF, Yerby SA. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. A biomechanical study. Spine 1998; 23(6):664–670.

    Article  PubMed  CAS  Google Scholar 

  22. Bai B, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999; 24(15):1521–1526.

    Article  PubMed  CAS  Google Scholar 

  23. Cunin G, Boissonnet H, Petite H, et al. Experimental vertebroplasty using osteoconductive granular material. Spine 2000; 25(9):1070–1076.

    Article  PubMed  CAS  Google Scholar 

  24. Belkoff SB, Mathis JM, Deramond H, et al. An ex-vivo biomechanical evaluation of a hydroxyapatite cement for use with kyphoplasty. Am J Neuroradiol 2001; 22:1212–1216.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong, W.H., Olan, W.J., Belkoff, S.M. (2002). Balloon Kyphoplasty. In: Mathis, J.M., Deramond, H., Belkoff, S.M. (eds) Percutaneous Vertebroplasty. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3694-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3694-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3696-0

  • Online ISBN: 978-1-4757-3694-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics