Biomechanical Considerations

  • Stephen M. Belkoff


Percutaneous vertebroplasty (PV) has enjoyed rapid acceptance as a procedure to stabilize vertebral compression fractures (VCFs) and to prevent fractures in vertebral bodies weakened by osteolytic tumors. Although the procedure is being performed with increasing frequency, scientific investigations into basic questions regarding the clinical efficacy and technical aspects of the procedure are in their infancy. This chapter presents a review of the current body of knowledge regarding PV fundamental research, addresses PV-related issues (such as possible mechanisms for pain relief, biomechanical considerations regarding the stabilization of mechanically compromised vertebral bodies, the types of cement available, and the mechanical consequences of altering the composition of those cements) and relates results from recent basic research on PV to the clinical perspective.


Vertebral Body Bone Cement Vertebral Compression Fracture Calcium Phosphate Cement Anterior Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alleyne CH Jr, Rodts GE Jr, Haid RW. Corpectomy and stabilization with methyl methacrylate in patients with metastatic disease of the spine: a technical note. J Spinal Disord 1995; 8(6):439–443.PubMedCrossRefGoogle Scholar
  2. 2.
    Cortet B, Cotten A, Deprez X, et al. [Value of vertebroplasty combined with surgical decompression in the treatment of aggressive spinal angioma. Apropos of 3 cases.] Rev Rhum Ed Fr 1994; 61(1): 16–22.PubMedGoogle Scholar
  3. 3.
    Cybulski GR. Methods of surgical stabilization for metastatic disease of the spine. Neurosurgery 1989; 25(2):240–252.PubMedCrossRefGoogle Scholar
  4. 4.
    Harrington KD. Anterior decompression and stabilization of the spine as a treatment for vertebral collapse and spinal cord compression from metastatic malignancy. Clin Orthop 1988; 233:177–197.PubMedGoogle Scholar
  5. 5.
    Harrington KD, Sim FH, Enis JE, et al. Methyl methacrylate as an adjunct in internal fixation of pathological fractures. Experience with three hundred and seventy-five cases. J Bone Joint Surg 1976; 58A(8):1047–1155.Google Scholar
  6. 6.
    Mavian GZ, Okulski CJ. Double fixation of metastatic lesions of the lumbar and cervical vertebral bodies utilizing methyl methacrylate compound: report of a case and review of a series of cases. J Am Osteopath Assoc 1986; 86(3):153–157.PubMedGoogle Scholar
  7. 7.
    O’Donnell RJ, Springfield DS, Motwani HK, et al. Recurrence of giant-cell tumors of the long bones after curettage and packing with cement. J Bone Joint Surg 1994; 76A(12):1827–1833.Google Scholar
  8. 8.
    Persson BM, Ekelund L, Lovdahl R, et al. Favourable results of acrylic cementation for giant cell tumors. Acta Orthop Scand 1984; 55(2):209–214.PubMedCrossRefGoogle Scholar
  9. 9.
    Sundaresan N, Galicich JH, Lane JM, et al. Treatment of neoplastic epidural cord compression by vertebral body resection and stabilization. J Neurosurg 1985; 63(5):676–684.PubMedCrossRefGoogle Scholar
  10. 10.
    Knight G. Paraspinal acrylic inlays in the treatment of cervical and lumbar spondylosis and other conditions. Lancet 1959; (ii):147–149.CrossRefGoogle Scholar
  11. 11.
    Galibert P, Deramond H, Rosat P, et al. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebro-plasty] Neurochirurgie 1987; 33(2):166–168.PubMedGoogle Scholar
  12. 12.
    Lapras C, Mottolese C, Deruty R, et al. [Percutaneous injection of methyl-methacrylate in osteoporosis and severe vertebral osteolysis (Galibert’s technic).] Ann Chir 1989; 43(5):371–376.PubMedGoogle Scholar
  13. 13.
    Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethyl methacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. Am J Neuroradiol 1997; 18(10):1897–1904.PubMedGoogle Scholar
  14. 14.
    Cyteval C, Sarrabere MP, Roux JO, et al. Acute osteoporotic vertebral collapse: open study on percutaneous injection of acrylic surgical cement in 20 patients. Am J Roentgenol 1999; 173(6):1685–1690.Google Scholar
  15. 15.
    Weill A, Chiras J, Simon JM, et al. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 1996; 199(l):241–247.PubMedGoogle Scholar
  16. 16.
    Cotten A, Duquesnoy B. Vertebroplasty: current data and future potential. Rev Rhum Engl Ed 1997; 64(ll):645–649.PubMedGoogle Scholar
  17. 17.
    Bostrom MP, Lane JM. Future directions. Augmentation of osteoporotic vertebral bodies. Spine 1997; 22(24 suppl):38S–42S.PubMedCrossRefGoogle Scholar
  18. 18.
    Deramond H, Depriester C, Galibert P, et al. Percutaneous vertebroplasty with polymethyl methacrylate. Technique, indications, and results. Radiol Clin North Am 1998; 36(3):533–546.PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis G. Properties of acrylic bone cement: state-of-the-art review. J Biomed Mater Res 1997; 38(2):155–182.PubMedCrossRefGoogle Scholar
  20. 20.
    Hasenwinkel JM, Lautenschlager EP, Wixson RL, et al. A novel high-viscosity, two-solution acrylic bone cement: effect of chemical composition on properties. J Biomed Mater Res 1999; 47(l):36–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Leeson MC, Lippitt SB. Thermal aspects of the use of polymethyl methacrylate in large metaphyseal defects in bone. A clinical review and laboratory study Clin Orthop 1993; 295:239–245.PubMedGoogle Scholar
  22. 22.
    Mjoberg B, Pettersson H, Rosenqvist R, et al. Bone cement, thermal injury and the radiolucent zone. Acta Orthop Scand 1984; 55(6):597–600.PubMedCrossRefGoogle Scholar
  23. 23.
    Eriksson RA, Albrektsson T, Magnusson B. Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 1984; 18(3): 261–268.PubMedCrossRefGoogle Scholar
  24. 24.
    Rouiller C, Majno G. Morphologische und chemische Untersuchung an Knochen nach Hitzeeinwirkung. Beitr Pathol Anat Allg Pathol 1953; 113:100–120.Google Scholar
  25. 25.
    Li S, Chien S, Branemark PI. Heat shock-induced necrosis and apop-tosis in osteoblasts. J Orthop Res 1999; 17(6):891–899.PubMedCrossRefGoogle Scholar
  26. 26.
    Jefferiss CD, Lee AJC, Ling RSM. Thermal aspects of self-curing polymethyl methacrylate. J Bone Joint Surg 1975; 57B(4):511–518.Google Scholar
  27. 27.
    De Vrind HH, Wondergem J, Haveman J. Hyperthermia-induced damage to rat sciatic nerve assessed in vivo with functional methods and with electrophysiology. J Neurosci Methods 1992; 45(3):165–174.PubMedCrossRefGoogle Scholar
  28. 28.
    Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 1999; 25(2 suppl):17S-21S.PubMedCrossRefGoogle Scholar
  29. 29.
    Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 1996; 200(2):525–530.PubMedGoogle Scholar
  30. 30.
    Dahl OE, Garvik LJ, Lyberg T. Toxic effects of methyl methacrylate monomer on leukocytes and endothelial cells in vitro [published erratum appears in Acta Orthop Scand 1995 Aug; 66(4):387]. Acta Orthop Scand 1994; 65(2):147–153.PubMedCrossRefGoogle Scholar
  31. 31.
    Svartling N, Pfaffli P, Tarkkanen L. Blood levels and half-life of methyl methacrylate after tourniquet release during knee arthroplasty. Arch Orthop Trauma Surg 1986; 105(l):36–39.PubMedCrossRefGoogle Scholar
  32. 32.
    Wenda K, Scheuermann H, Weitzel E, et al. Pharmacokinetics of methyl methacrylate monomer during total hip replacement in man. Arch Orthop Trauma Surg 1988; 107(5):316–321.PubMedCrossRefGoogle Scholar
  33. 33.
    San Millan RD, Burkhardt K, Jean B, et al. Pathology findings with acrylic implants. Bone 1999; 25(2 suppl):85S-90S.Google Scholar
  34. 34.
    Belkoff SM, Mathis JM, Jasper LE, et al. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Presented at the Eleventh Interdisciplinary Research Conference on Biomaterials (Groupe de Recherches Interdisciplinaire sur les Bio-materiaux Ostéo-articulaires Injectables, GRIBOI), March 8, 2001.Google Scholar
  35. 35.
    Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 2000; 25(9):1061–1064.PubMedCrossRefGoogle Scholar
  36. 36.
    Tohmeh AG, Mathis JM, Fenton DC, et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine 1999; 24(17):1772–1776.PubMedCrossRefGoogle Scholar
  37. 37.
    Garfin SR, Blair B, Eismont FJ, et al. Thoracic and upper lumbar spine injuries. In: Browner BD, Jupiter JB, Levine AM, et al., eds. Skeletal Trauma: Fractures, Dislocations, Ligamentous Injuries. 2nd ed. Philadelphia: WB Saunders Co; 1998:947–1034.Google Scholar
  38. 38.
    Mow VC, Hayes WC. Basic Orthopaedic Biomechanics. New York: Raven Press, 1991.Google Scholar
  39. 39.
    WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994; 843:1–129.Google Scholar
  40. 40.
    Ross PD, Davis JW, Epstein RS, et al. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 1991; 114(ll):919–923.PubMedGoogle Scholar
  41. 41.
    Eastell R, Cedel SL, Wahner HW, et al. Classification of vertebral fractures. J Bone Miner Res 1991; 6(3):207–215.PubMedCrossRefGoogle Scholar
  42. 42.
    Riggs BL, Melton LJ, III. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 1995; 17(5 suppl):505S–511S.PubMedCrossRefGoogle Scholar
  43. 43.
    Lyritis GP, Mayasis B, Tsakalakos N, et al. The natural history of the osteoporotic vertebral fracture. Clin Rheumatol 1989; 8(suppl 2): 66–69.PubMedCrossRefGoogle Scholar
  44. 44.
    Cotten A, Boutry N, Cortet B, et al. Percutaneous vertebroplasty: state of the art. Radiographics 1998; 18(2):311–323.PubMedGoogle Scholar
  45. 45.
    Barr JD, Barr MS, Lemley TJ, et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine 2000; 25(8):923–928.PubMedCrossRefGoogle Scholar
  46. 46.
    Belkoff SM, Mathis JM, Jasper LE, et al. The biomechanics of vertebroplasty: the effect of cement volume on mechanical behavior. Spine 2001; 26(14):1537–1541.PubMedCrossRefGoogle Scholar
  47. 47.
    Terjesen T, Apalset K. The influence of different degrees of stiffness of fixation plates on experimental bone healing. J Orthop Res 1988; 6(2):293–299.PubMedCrossRefGoogle Scholar
  48. 48.
    Dean JR, Ison KT, Gishen P. The strengthening effect of percutaneous vertebroplasty. Clin Radiol 2000; 55(6):471–476.PubMedCrossRefGoogle Scholar
  49. 49.
    Lyles KW, Gold DT, Shipp KM, et al. Association of osteoporotic vertebral compression fractures with impaired functional status. Am J Med 1993; 94(6)595–601.PubMedCrossRefGoogle Scholar
  50. 50.
    Silverman SL. The clinical consequences of vertebral compression fracture. Bone 1992; 13(suppl 2):S27-S31.PubMedCrossRefGoogle Scholar
  51. 51.
    Schlaich C, Minne HW, Bruckner T, et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 1998; 8(3):261–267.PubMedCrossRefGoogle Scholar
  52. 52.
    Leech JA, Dulberg C, Kellie S, et al. Relationship of lung function to severity of osteoporosis in women. Am Rev Respir Dis 1990; 141(1):68–71.PubMedGoogle Scholar
  53. 53.
    Leidig-Bruckner G, Minne HW, Schlaich C, et al. Clinical grading of spinal osteoporosis: quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Miner Res 1997; 12(4):663–675.PubMedCrossRefGoogle Scholar
  54. 54.
    Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine 2001; 26(2):151–156.PubMedCrossRefGoogle Scholar
  55. 55.
    Belkoff SB, Mathis JM, Deramond H, et al. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with kyphoplasty. Am J Neuroradiol 2001; 22:2212–2216.Google Scholar
  56. 56.
    Belkoff SM, Mathis JM, Jasper LE, et al. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 2001; 26(14):1542–1546.PubMedCrossRefGoogle Scholar
  57. 57.
    Wilson DR, Myers ER, Mathis JM, et al. Effect of augmentation on the mechanics of vertebral wedge fractures. Spine 2000; 25(2):158–165.PubMedCrossRefGoogle Scholar
  58. 58.
    Lieberman IH, Dudeney S, Reinhardt M-K, et al. Initial outcome and efficacy of kyphoplasty in the treatment of painful osteoporotic vertebral compression fractures. Spine 2001; 26(14):1631–1638.PubMedCrossRefGoogle Scholar
  59. 59.
    Deramond H, Depriester C, Toussaint P, et al. Percutaneous verte-broplasty. Semin Musculoskelet Radiol 1997; l(2):285–295.CrossRefGoogle Scholar
  60. 60.
    Jasper LE, Deramond H, Mathis JM, et al. The effect of monomer-to-powder ratio on the material properties of cranioplastic. Bone 1999; 25(2 suppl):27S-29S.PubMedCrossRefGoogle Scholar
  61. 61.
    Jasper LE, Deramond H, Mathis JM, et al. Material properties of various cements for use with vertebroplasty. J Mate Sci Mate Med 2002; 13:1–5.CrossRefGoogle Scholar
  62. 62.
    Svartling N, Pfaffli P, Tarkkanen L. Methylmethacrylate blood levels in patients with femoral neck fracture. Arch Orthop Trauma Surg 1985; 104(4):242–246.PubMedCrossRefGoogle Scholar
  63. 63.
    Jasper L, Deramond H, Mathis JM, et al. Evaluation of PMMA cements altered for use in vertebroplasty. Presented at the Tenth Interdisciplinary Research Conference on Injectible Biomaterials, Amiens, France, March 14–15, 2000.Google Scholar
  64. 64.
    Padovani B, Kasriel O, Brunner P, et al. Pulmonary embolism caused by acrylic cement: a rare complication of percutaneous vertebroplasty. Am J Neuroradiol 1999; 20(3):375–357.PubMedGoogle Scholar
  65. 65.
    Wilkes RA, MacKinnon JG, Thomas WG. Neurological deterioration after cement injection into a vertebral body. J Bone Joint Surg 1994; 76B(1):155.Google Scholar
  66. 66.
    Perrin C, Jullien V, Padovani B, et al. [Percutaneous vertebroplasty complicated by pulmonary embolus of acrylic cement.] Rev Mal Respir 1999; 16(2):215–217.PubMedGoogle Scholar
  67. 67.
    Saha S, Pal S. Mechanical properties of bone cement: a review. J Biomed Mater Res 1984; 18(4):435–462.PubMedCrossRefGoogle Scholar
  68. 68.
    Riser WH. Introduction. Vet Pathol 1975; 12:235–238.Google Scholar
  69. 69.
    American Society for Testing and Materials. Standard F451, Specification for acrylic bone cement. In: Annual Book of ASTM Standards. West Conshohocken, PA: American Society for Testing and Materials; 1997:47–53.Google Scholar
  70. 70.
    Schildhauer TA, Bennett AP, Wright TM, et al. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique. J Orthop Res 1999; 17(l):67–72.PubMedCrossRefGoogle Scholar
  71. 71.
    Mermelstein LE, McLain RF, Yerby SA. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. A biomechanical study. Spine 1998; 23(6):664–670.PubMedCrossRefGoogle Scholar
  72. 72.
    Bai B, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999; 24(15):1521–1526.PubMedCrossRefGoogle Scholar
  73. 73.
    Fujita H, Nakamura T, Tamura J, et al. Bioactive bone cement: effect of the amount of glass-ceramic powder on bone-bonding strength. J Biomed Mater Res 1998; 40(1):145–152.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Stephen M. Belkoff

There are no affiliations available

Personalised recommendations