Advertisement

Constructing Matched Sets and Strata

  • Paul R. Rosenbaum
Part of the Springer Series in Statistics book series (SSS)

Abstract

This chapter discusses the construction of matched sets or strata when there are several, perhaps many, observed covariates x. There are three topics: the propensity score, the form of an optimal stratification, and the construction of optimal matched sets. This introduction summarizes the main issues and findings.

Keywords

Propensity Score Pair Match Treated Subject Assignment Algorithm Optimal Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993) Network Flows: Theory, Algorithms, and Applications. New York: Prentice-Hall.zbMATHGoogle Scholar
  2. Bergstralh, E. J., Kosanke, J. L., and Jacobsen, S. L. (1996) Software for optimal matching in observational studies. Epidemiology, 7, 331–332. http://www.mayo.edu/hsr/sasmac.html.Google Scholar
  3. Bertsekas, D. (1991) Linear Network Optimization: Algorithms and Codes. Cambridge, MA: MIT Press. http://www.mit.edu:8001//people/dimitrib/home.html.Google Scholar
  4. Bertsekas, D. (2001) Auction algorithms. Encyclopedia of Optimization, C. A. Foudas and P. M. Pardalos, eds., Kluwer.Google Scholar
  5. Carpenter, R. (1977) Matching when covariables are normally distributed. Biometrika, 64, 299–307.zbMATHCrossRefGoogle Scholar
  6. Cochran, W. G. (1968) The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics, 24, 205–213.MathSciNetCrossRefGoogle Scholar
  7. Cochran, W. G. and Rubin, D. B. (1973) Controlling bias in observational studies: A review. Sankya, Series A, 35, 417–446.zbMATHGoogle Scholar
  8. Cox, D. R. (1970) The Analysis of Binary Data. London: Methuen.zbMATHGoogle Scholar
  9. Cox, D. R. and Snell, E. J. (1981) Applied Statistics: Principles and Examples. London: Chapman & Hall.zbMATHGoogle Scholar
  10. Dehejia, R. H. and Wahba, S. (1999) Causal effects in nonexperimental studies. Reevaluating the evaluating of training programs. Journal of the American Statistical Association, 94, 1053–1062.CrossRefGoogle Scholar
  11. Ford, L. and Fulkerson, D. (1962) Flows in Networks. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  12. Ghavamian, R., Bergstralh, E. J., Blute, M. L., Slezak, J., and Zincke, H. (1999) Radical retropubic prostatectomy plus orchectomy versus orchietomy for pTxN+ prostate cancer: A matched comparison. Journal of Urology, 161, 1223 – 1227.CrossRefGoogle Scholar
  13. Gu, X. S. and Rosenbaum, P. R. (1993) Comparison of multivariate matching methods: Structures, distances and algorithms. Journal of Computational and Graphical Statistics, 2, 405–420.Google Scholar
  14. Imbens, G. W. (2000) The role of the propensity score in estimating doseresponse functions. Biometrika, 87, 706 – 710.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Joffe, M. M. and Rosenbaum, P. R. (1999) Propensity scores. American Journal of Epidemiology, 150, 327 – 333.CrossRefGoogle Scholar
  16. Kuhn, H. W. (1955) The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2, 83–97.MathSciNetCrossRefGoogle Scholar
  17. Lechner, M. (2000) An evaluation of public-sector-sponsored continuous vocational training programs in East Germany. Journal of Human Resources, 35, 347 – 375.CrossRefGoogle Scholar
  18. Li, Y., Propert, K. J. and Rosenbaum, P. R. (2001) Balanced risk set matching. Journal of the American Statistical Association, 96, September, to appear.Google Scholar
  19. Lu, B., Zanutto, E., Hornik, R., and Rosenbaum, P. R. (2002) Matching with doses in an observational study of a media campaign against drug abuse. Journal of the American Statistical Association, to appear.Google Scholar
  20. McCullagh, P. (1980) Regression models for ordinal data. Journal of the Royal Statistical Society, B, 42, 109 – 142.MathSciNetzbMATHGoogle Scholar
  21. Ming, K. and Rosenbaum, P. R. (2000) Substantial gains in bias reduction from matching with a variable number of controls. Biometrics, 56, 118 – 124.zbMATHCrossRefGoogle Scholar
  22. Ming, K. and Rosenbaum, P. R. (2001) A note on optimal matching with variable controls using the assignment algorithm. Journal of Computational and Graphical Statistics, to appear.Google Scholar
  23. Normand, S. T., Landrum, M. B., Guadagnoli, E., Ayanian, J. Z., Ryan, T. J., Cleary, P. D., and McNeil, B. J. (2001) Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: A matched analysis using propensity scores. Journal of Clinical Epidemiology, 54, 387 – 398.CrossRefGoogle Scholar
  24. Nuako, K. W., Ahlquist, D. A., Sandborn, W. J., Mahoney, D. W., Siems, D. M., and Zinsmeister, A. R. (1998) Primary sclerosing cholangitis and colorectal carcinoma in patients with chronic ulcerative colitis: A case-control study. Cancer, 82, 822 – 826.CrossRefGoogle Scholar
  25. Papadimitriou, C. and Steiglitz, K. (1982) Combinatorial Optimization. Englewood Cliffs, NJ: Prentice-Hall.zbMATHGoogle Scholar
  26. Petersen, L. A., Normand, S., Daley, J., and McNeil, B. (2000) Outcome of myocardial infarction in Veterans Health Administration patients as compared with medicare patients. New England Journal of Medicine, 343, December 28, 2000, 1934 – 1941.CrossRefGoogle Scholar
  27. Phillips C. D., Spry K. M., Sloane P. D., and Hawes, C. (2000) Use of physical restraints and psychotropic medications in Alzheimer special care units in nursing homes. American Journal of Public Health, 90, 92 – 96.CrossRefGoogle Scholar
  28. Powers, D. E. and Rock, D. A. (1999) Effects of coaching on SAT I: Reasoning test scores. Journal of Educational Measurement, 36, 93 – 118.CrossRefGoogle Scholar
  29. Rephann, T. and Isserman, A. (1994) New highways as economic development tools-An evaluation using quasi-experimental matching methods. Regional Science and Urban Economics, 24, 723 – 751.CrossRefGoogle Scholar
  30. Rockafellar, R. T. (1984) Network Flows and Monotropic Optimization. New York: Wiley.zbMATHGoogle Scholar
  31. Rosenbaum, P. R. (1984) Conditional permutation tests and the propensity score in observational studies. Journal of the American Statistical Association, 79, 565–574.MathSciNetCrossRefGoogle Scholar
  32. Rosenbaum, P. R. (1987) Model-based direct adjustment. Journal of the American Statistical Association, 82, 387–394.zbMATHCrossRefGoogle Scholar
  33. Rosenbaum, P. R. (1989) Optimal matching for observational studies. Journal of the American Statistical Association, 84, 1024–1032.CrossRefGoogle Scholar
  34. Rosenbaum, P. R. (1991) A characterization of optimal designs for observational studies. Journal of the Royal Statistical Society, Series 13, 53, 597–610.MathSciNetGoogle Scholar
  35. Rosenbaum, P. R. and Rubin, D. B. (1983) The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Rosenbaum, P. R. and Rubin, D. B. (1984) Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79, 516–524.CrossRefGoogle Scholar
  37. Rosenbaum, P. R. and Rubin, D. B. (1985) Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. American Statistician, 39, 33–38.Google Scholar
  38. Rosenbaum, P. R. and Silber, J. H. (2001) Matching and thick description in an observational study of mortality after surgery. Biostatistics, 2, 217 – 232.zbMATHCrossRefGoogle Scholar
  39. Rubin, D. B. (1973) The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics, 29, 185–203.CrossRefGoogle Scholar
  40. Rubin, D. B. (1979) Using multivariate matched sampling and regression adjustment to control bias in observational studies. Journal of the American Statistical Association, 74, 318–328.zbMATHGoogle Scholar
  41. Rubin, D. B. (1980) Bias reduction using Mahalanobis metric matching. Biometrics, 36, 293–298.zbMATHCrossRefGoogle Scholar
  42. Silber, J. H., Kennedy, S. K., Even-Shoshan, O., Chen, W., Koziol, L. F., Showan, A. M., Longnecker, D. E. (2000) Anesthesiologist direction and patient outcomes. Anesthesiology, 93, 152 – 163.CrossRefGoogle Scholar
  43. Silber, J. H., Rosenbaum, P. R., Trudeau, M. E., Even-Shoshan, O., Chen, W., Zhang, X., and Mosher, R. E. (2001) Multivariate matching and bias reduction in the surgical outcomes study. Medical Care, to appear.Google Scholar
  44. Smith, A., Kark, J., Cassel, J., and Spears, G. (1977) Analysis of prospective epidemiologic studies by minimum distance case- control matching. American Journal of Epidemiology, 105, 567–574.Google Scholar
  45. Smith, H. (1997) Matching with multiple controls to estimate treatment effects in observational studies. Sociological Methodology, 27, 325 – 353.CrossRefGoogle Scholar
  46. Snyder, T. L. and Steele, J. M. (1990) Worst case greedy matching in the unit d-cube. Networks, 20, 779 – 800.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Tarjan, R. (1983) Data Structures and Network Algorithms. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  48. Walkup, D. (1979) On the expected value of a random assignment problem. SIAM Journal on Computing, 8, 440–442.MathSciNetzbMATHCrossRefGoogle Scholar
  49. Warner, D. O., Warner, M. A., Offord, K. P., Schroeder, D. R., Maxson, P., and Scanlon, P. D. (1999) Airway obstruction and perioperative complications in smokers undergoing abdominal surgery. Anesthesiology, 90, 372 – 379.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Paul R. Rosenbaum
    • 1
  1. 1.Department of Statistics, The Wharton SchoolUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations