Skip to main content

Spectral Theory of Linear Operators

  • Chapter
Operator Theory for Electromagnetics

Abstract

In this chapter we examine the spectral properties of operators commonly encountered in electromagnetics. We emphasize the role of eigenvalues and eigenfunctions in spectral theory since these quantities play an important role in many applications, as both mathematical and physical entities. The primary goal of this chapter is to present elements from the spectral theory of operators on infinite-dimensional spaces. Operators on finitedimensional spaces and their associated matrix representations are also briefly covered, as this material forms an appropriate starting point for discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bonnet-Ben Dhia, A. and Ramdani, K. (2000). Mathematical analysis of conducting and superconducting transmission lines, SIAM J. Appl. Math., Vol. 60, no. 6, pp. 2087–2113.

    Article  MathSciNet  MATH  Google Scholar 

  2. Friedman, B. (1956). Principles and Techniques of Applied Mathemnatics, New York: Dover.

    Google Scholar 

  3. Krall, A.M. (1973). Linear Methods in Applied Analysis, Reading, MA: Addison-Wesley.

    Google Scholar 

  4. Stakgold, I. (1999). Green’s Functions and Boundary Value Problems, 2nd ed., New York: John Wiley and Sons.

    Google Scholar 

  5. Harrington, R.F. (1961). Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill.

    Google Scholar 

  6. Naimark, M.A. (1968). Linear Differential Operators, Part II, New York: Frederick Ungar.

    MATH  Google Scholar 

  7. Mrozowski, M. (1997). Guided Electromagnetic Waves, Properties and Analysis, Somerset, England: Research Studies Press.

    Google Scholar 

  8. Lindell, I.V. (1982). Variational methods for nonstandard eigenvalue problems in waveguide and resonator analysis, IEEE Trans. Microwave Theory and Tech., Vol. MTT-30, pp. 1194–1204, Aug.

    Article  MathSciNet  Google Scholar 

  9. Jones, D.S. (1994). Methods in Electromagnetic Wave, Propagation, 2nd ed., New York: IEEE Press.

    Book  Google Scholar 

  10. Hanson, G.W. and Yakovlev, A.B. (1999). Investigation of mode interaction on planar dielectric waveguides with loss and gain, Radio Science, Vol. 34, no. 6, pp. 1349–1359, Nov.—Dec.

    Article  Google Scholar 

  11. Steinberg, S. (1968). Meromorphic families of compact operators, Arch. Rat. Mech. Anal., Vol. 31, pp. 372–379.

    Article  MATH  Google Scholar 

  12. Reed, M. and Simon, B. (1980). Methods of Mathematical Physics I: Functional Analysis, San Diego: Academic Press.

    MATH  Google Scholar 

  13. Goursat, E. (1959). Functions of a Complex Variable, New York: Dover.

    MATH  Google Scholar 

  14. (1981). Special issue of Electromagnetics, Vol. 1.

    Google Scholar 

  15. Marin, L. (1981). Major results and unresolved issues in singularity expansion method, Electromagnetics, Vol. 1, pp. 361–373.

    Article  Google Scholar 

  16. Marin, L. and Latham, R.W. (1972). Analytical properties of the field scattered by a perfectly conducting, finite body, Interaction Note 92, Phillips Laboratory Note Series, Kirtland AFB, Jan.

    Google Scholar 

  17. Baum, C.E. (1976). Emerging technology for transient and broad-band analysis and synthesis of antennas and scatterers, Proc. IEEE, Vol. 64, Nov.

    Google Scholar 

  18. Cho, S.K. (1990). Electromagnetic Scattering, New York: SpringerVerlag.

    Book  Google Scholar 

  19. Lancaster, P. and M. Tismenetsky (1985). The Theory of Matrices, New York: Academic Press.

    MATH  Google Scholar 

  20. Axler, S. (1997). Linear Algebra Done Right, New York: SpringerVerlag.

    MATH  Google Scholar 

  21. Debnath, L. and Mikusiński, P. (1999). Introduction to Hilbert Spaces with Applications, San Diego: Academic Press.

    MATH  Google Scholar 

  22. Dautray, R. and Lions, J.L. (1990). Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, New York: Springer-Verlag.

    Book  Google Scholar 

  23. Gohberg, I. and Goldberg, S. (1980). Basic Operator Theory, Boston: Birkhäuser.

    Google Scholar 

  24. Veliev, E.I. (1999). Plane wave diffraction by a half-plane: A new analytical approach, J. Electromagnetic Waves and Applications, Vol. 13, pp. 1439–1453.

    Article  MathSciNet  MATH  Google Scholar 

  25. Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions, New York: Dover.

    Google Scholar 

  26. Gohberg, I.C. and Krein, M.G. (1969). Introduction to the Theory of Linear Nonselfadjoint Operators, Providence, RI: American Mathematical Society.

    MATH  Google Scholar 

  27. Ramm, A. G. (1980). Theoretical and practical aspects of singularity and eigenmode expansion methods, IEEE Trans. Antennas Propagat., Vol. AP-28, pp. 897–901, Nov.

    Article  Google Scholar 

  28. Ramm, A. G. (1973). Eigenfunction expansion of a discrete spectrum in diffraction problems, Radio Eng. Electr. Phys., Vol. 18, pp. 364–369.

    Google Scholar 

  29. Dolph, C. L. (1981). On some mathematical aspects of SEM, EEM, and scattering, Electromnagnetics, Vol. 1, pp. 375–383.

    Article  Google Scholar 

  30. Ramm, A. G. (1972). A remark on the theory of integral equations, Diff. Eq., Vol. 8, pp. 1177–1180.

    MATH  Google Scholar 

  31. Morse, P.M. and Feshbach, H. (1953). Methods of Theoretical Physics, Vol. I, New York: McGraw-Hill.

    MATH  Google Scholar 

  32. Chew, W.C. (1990). Waves and Fields in Inhomogeneous Media, New York: IEEE Press.

    Google Scholar 

  33. Dennery, P. and Krzywicki, A. (1995). Mathematics for Physicists, New York: Dover.

    Google Scholar 

  34. Dunford, N. and Schwartz (1958). Linear Operators, Part I, New York: Wiley.

    MATH  Google Scholar 

  35. Vainikko, G. M. and Karma, O.O. (1974). The convergence rate of approximate methods in the eigenvalue problem when the parameter appears non-linearly, Zh. Vychisl. Mat. Fiz., Vol. 14, no. 6, pp. 1393–1408.

    MathSciNet  MATH  Google Scholar 

  36. Karchevskii, E.M. (1999). Analysis of the eigenmode spectra of dielectric waveguides, Comput. Math. and Math. Phy., Vol. 39, no. 9, pp. 1493–1498.

    MathSciNet  Google Scholar 

  37. Friedman, A. (1982). Foundations of Modern Analysis, New York: Dover.

    MATH  Google Scholar 

  38. Akhiezer, N.I. and Glazman, I.M. (1961 & 1963). Theory of Linear Operators in Hilbert Space, Vols. I and II, New York: Dover.

    MATH  Google Scholar 

  39. Shilov, G.E. (1974). Elementary Functional Analysis, New York: Dover.

    MATH  Google Scholar 

  40. Naylor, A.W. and Sell, G.R. (1982). Linear Operator Theory in Engineering and Science, 2nd ed., New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  41. Dudley, D.G. (1994). Mathematical Foundations for Electromagnetic Theory, New York: IEEE Press.

    Book  Google Scholar 

  42. Tai, C.T. (1994). Dyadic Green Functions in Electromagnetic Theory, 2nd ed., New York: IEEE Press.

    MATH  Google Scholar 

  43. Young, N. (1988). An Introduction to Hilbert Space, Cambridge University Press: Cambridge.

    Book  MATH  Google Scholar 

  44. Hansen, W.W. (1935). A new type of expansion in radiation problems, Phys. Rev., Vol. 47, pp. 139–143.

    Article  Google Scholar 

  45. Peterson, A.F., Ray, S.L., and Mittra, R. (1998). Computational Methods for Electromagnetics, New York: IEEE Press.

    Google Scholar 

  46. Naimark, M.A. (1967). Linear Differential Operators, Part I, New York: Frederick Ungar.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanson, G.W., Yakovlev, A.B. (2002). Spectral Theory of Linear Operators. In: Operator Theory for Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3679-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3679-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2934-1

  • Online ISBN: 978-1-4757-3679-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics