Quantum Dot Photonic Crystals

  • David J. Norris
  • Yurii A. Vlasov
Part of the Nanostructure Science and Technology book series (NST)


An early goal of research in semiconductor quantum dots was to utilize the finite size of these materials to modify the electronic properties of the semiconductor. In particular, researchers wished to modify its electronic density of states, defined as the number of electronic states per unit energy per unit volume. In a bulk semiconductor the density of states, p e , can be described as a smooth function near the valence and conduction band edges, as depicted in Fig. 7.1a.1 However, in a quantum dot, where the continuous bands of the bulk crystal evolve into a series of atomic-like levels due to quantum confinement, p e is dramatically altered.2–4 Indeed, p e can be concentrated into a series of individual features, as shown in Fig. 7.1b.5


Photonic Crystal Silica Sphere Inverted Opal Photonic Density Whisper Gallery Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (W B. Saunders, Orlando, 1976), Ch. 28.Google Scholar
  2. 2.
    A. L. Efros and A. L. Efros, Soy. Phys. Semicond. 16, 772 (1982).Google Scholar
  3. 3.
    L. E. Brus, J. Chem. Phys. 79, 5566 (1983).CrossRefGoogle Scholar
  4. 4.
    L. E. Brus, J. Lumin. 32, 381 (1984).CrossRefGoogle Scholar
  5. 5.
    S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 8113 (1987).CrossRefGoogle Scholar
  6. 6.
    P. Y. Yu and M. Cardona, Fundamentals of Semiconductors ( Springer-Verlag, Berlin, 1996 ), p. 460.Google Scholar
  7. 7.
    M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quant. Elect. QE-22, 1915 (1986).Google Scholar
  8. 8.
    Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).CrossRefGoogle Scholar
  9. 9.
    C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, Fundamentals and Applications ( Academic, San Diego, 1991 ).Google Scholar
  10. 10.
    M. Grundmann, Physica E 5, 167 (2000).CrossRefGoogle Scholar
  11. 11.
    V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).CrossRefGoogle Scholar
  12. 12.
    Cavity Quantum Electrodynamics, edited by P. R. Berman ( Academic Press, San Diego, 1994 ).Google Scholar
  13. 13.
    E. M. Purcell, Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  14. 14.
    D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).CrossRefGoogle Scholar
  15. 15.
    S. Haroche and D. Kleppner, Physics Today 42, 24 (January 1989).CrossRefGoogle Scholar
  16. 16.
    Optical Processes in Microcavities, edited by R. K. Chang and A. J. Campillo, ( World Scientific, Singapore, 1996 ).Google Scholar
  17. 17.
    Since whispering gallery modes are “leaky”, the photon can never be trapped indefinitely. See Ref. 16.Google Scholar
  18. 18.
    See, e.g., Confined Electrons and Photons, edited by E. Burstein and C. Weisbuch ( Plenum Press, New York, 1995 ).Google Scholar
  19. 19.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals ( Princeton University Press, Princeton, 1995 ).Google Scholar
  20. 20.
    J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).CrossRefGoogle Scholar
  21. 21.
    E. Yablonovitch, Sci. Am. 285, 34 (2001).CrossRefGoogle Scholar
  22. 22.
    For recent reviews, see articles in Photonic Band Gap Materials, edited by C. M. Soukoulis (Kluwer, Dordrecht 1996) and Photonic Crystals and Light Localization, edited by C. M. Soukoulis ( Kluwer, Dordrecht 2001 ).Google Scholar
  23. 23.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
  24. 24.
    S. John, Phys. Rev. Lett. 58, 2486 (1987).CrossRefGoogle Scholar
  25. 25.
    T. F. Krauss, R. M. De La Rue, and S. Brand, Nature 383, 699 (1996).CrossRefGoogle Scholar
  26. 26.
    C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, Appl. Phys. Lett. 77, 2813 (2000).CrossRefGoogle Scholar
  27. 27.
    E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).Google Scholar
  28. 28.
    O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).CrossRefGoogle Scholar
  29. 29.
    S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).CrossRefGoogle Scholar
  30. 30.
    S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).CrossRefGoogle Scholar
  31. 31.
    V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Y. A. Vlasov, Nuovo Cimento D 17, 1349 (1995).CrossRefGoogle Scholar
  32. 32.
    J. V. Sanders, Acta Cryst. A 24, 427 (1968).CrossRefGoogle Scholar
  33. 33.
    J. V. Sanders, Nature 204, 1151 (1964).CrossRefGoogle Scholar
  34. 34.
    O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Nature 389 447 (1997).Google Scholar
  35. 35.
    B. T. Holland, C. F. Blanford, and A. Stein, Science 281 538 (1998).Google Scholar
  36. 36.
    J. E. G. J. Wijnhoven and W. L. Vos, Science 281, 802 (1998).CrossRefGoogle Scholar
  37. 37.
    G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 74, 3933 (1999).CrossRefGoogle Scholar
  38. 38.
    G. Subramanian, V. N. Manoharan, J. D. Thorne, and D. J. Pine, Adv. Mater. 11, 1261 (1999).CrossRefGoogle Scholar
  39. 39.
    A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, Science 282, 897 (1998).CrossRefGoogle Scholar
  40. 40.
    S. H. Park and Y. Xia, Adv. Mater. 10, 1045 (1998).CrossRefGoogle Scholar
  41. 41.
    P. Jiang, K. S. Hwang, D. M. Mittleman, J. F. Bertone, and V. L. Colvin, J. Am. Chem. Soc. 121, 11630 (1999).CrossRefGoogle Scholar
  42. 42.
    M. Deutsch, Y. A. Vlasov, and D. J. Norris, Adv. Mater. 12, 1176 (2000).CrossRefGoogle Scholar
  43. 43.
    O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, Nature 401 548 (1999).Google Scholar
  44. 44.
    K. M. Kulinowski, P. Jiang, H. Vaswani, and V. L. Colvin, Adv. Mater. 12, 833 (2000).CrossRefGoogle Scholar
  45. 45.
    J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, Adv. Mater. 12, 888 (2000).CrossRefGoogle Scholar
  46. 46.
    N. Eradat, J. D. Huang, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, in Photonic Crystals and Light Localization, edited by C. M. Soukoulis ( Kluwer, Dordrecht, 2001 ).Google Scholar
  47. 47.
    Y. A. Vlasov, N. Yao, and D. J. Norris, Adv. Mater. 11, 165 (1999).CrossRefGoogle Scholar
  48. 48.
    H. Miguez, A. Blanco, F. Meseguer, C. Lopez, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, Phys. Rev. B 59, 1563 (1999).CrossRefGoogle Scholar
  49. 49.
    P. V. Braun and P. Wiltzius, Nature 402, 603 (1999).CrossRefGoogle Scholar
  50. 50.
    A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. v. Driel, Nature 405, 437 (2000).CrossRefGoogle Scholar
  51. 51.
    H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Fornés, Langmuir 16, 4405 (2000).CrossRefGoogle Scholar
  52. 52.
    S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Muller, and R. Zentel, Appl. Phys. Lett. 79, 731 (2001).CrossRefGoogle Scholar
  53. 53.
    Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).CrossRefGoogle Scholar
  54. 54.
    H. S. Söztier, J. W. Haus, and R. Inguva, Phys. Rev. B 45, 13962 (1992).CrossRefGoogle Scholar
  55. 55.
    K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).CrossRefGoogle Scholar
  56. 56.
    M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, J. Opt. Soc. Am. B 16, 1403 (1999).CrossRefGoogle Scholar
  57. 57.
    A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk, and W. L. Vos, Phys. Rev. Lett. 88, 143903 /1 (2002).Google Scholar
  58. 58.
    M. J. A. de Dood, Ph.D. thesis, Utrecht University, 2002.Google Scholar
  59. 59.
    A. P. Alivisatos, Science 271, 933 (1996).CrossRefGoogle Scholar
  60. 60.
    M. Nirmal and L. E. Brus, Acc. Chem. Res. 32, 407 (1999).CrossRefGoogle Scholar
  61. 61.
    A. Eychmüller, J. Phys. Chem. B 104, 6514 (2000).CrossRefGoogle Scholar
  62. 62.
    C. B. Murray, C. R. Kagan, and M. G. Bawendi, Ann. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
  63. 63.
    V. N. Astratov, Y. A. Viasov, O. Z. Karimov, A. A. Kaplyanskii, Y. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev, Phys. Lett. A 222, 349 (1996).CrossRefGoogle Scholar
  64. 64.
    S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. Sotomayor Torres, Appl. Phys. Lett. 70, 2091 (1997).CrossRefGoogle Scholar
  65. 65.
    H. M. Yates, M. E. Pemble, H. Miguez, A. Blanco, C. Lopez, F. Meseguer, and L. Vazquez, J. Cryst. Growth 193, 9 (1998).CrossRefGoogle Scholar
  66. 66.
    C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
  67. 67.
    J. E. Bowen Katari, V. L. Colvin, and A. P. Alivisatos, J. Phys. Chem. 98, 4109 (1994).CrossRefGoogle Scholar
  68. 68.
    O. I. Micic, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L. Macho!, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, and N. Peyhambarian, J. Phys. Chem. 99 7754 (1995).Google Scholar
  69. 69.
    A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, and A. P. Alivisatos, Appl. Phys. Lett. 69, 1432 (1996).CrossRefGoogle Scholar
  70. 70.
    M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. B 102, 3655 (1998).CrossRefGoogle Scholar
  71. 71.
    D. J. Norris, N. Yao, F. T. Chamock, and T. A. Kennedy, Nano Lett. 1, 3 (2001).CrossRefGoogle Scholar
  72. 72.
    Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 168 (2001).Google Scholar
  73. 73.
    D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, Phys. Rev. Lett. 72, 2612 (1994).CrossRefGoogle Scholar
  74. 74.
    M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995).CrossRefGoogle Scholar
  75. 75.
    D. J. Norris and M. G. Bawendi, Phys. Rev. B 53, 16338 (1996).CrossRefGoogle Scholar
  76. 76.
    D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, Phys. Rev. B 53, 16347 (1996).CrossRefGoogle Scholar
  77. 77.
    M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
  78. 78.
    X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).CrossRefGoogle Scholar
  79. 79.
    B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
  80. 80.
    V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994).CrossRefGoogle Scholar
  81. 81.
    B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, Appl. Phys. Lett. 66, 1316 (1995).CrossRefGoogle Scholar
  82. 82.
    N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Science 295, 1506 (2002).CrossRefGoogle Scholar
  83. 83.
    H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, Appl. Phys. Lett. 80, 4614 (2002).CrossRefGoogle Scholar
  84. 84.
    C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science 270, 1335 (1995).CrossRefGoogle Scholar
  85. 85.
    L. Brus, J. Phys. Chem. 98, 3575 (1994).CrossRefGoogle Scholar
  86. 86.
    M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc. Commun., 801 (1994).Google Scholar
  87. 87.
    C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, Science 277, 1978 (1997).CrossRefGoogle Scholar
  88. 88.
    S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).CrossRefGoogle Scholar
  89. 89.
    Y. A. Viasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, Phys. Rev. E 61, 5784 (2000).CrossRefGoogle Scholar
  90. 90.
    Z.-Y. Li and Z.-Q. Zhang, Phys. Rev. B 62, 1516 (2000).CrossRefGoogle Scholar
  91. 91.
    N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, Nature 361, 26 (1993).CrossRefGoogle Scholar
  92. 92.
    A. S. Dimitrov, C. D. Dushkin, H. Yoshimura, and K. Nagayama, Langmuir 10, 432 (1994).CrossRefGoogle Scholar
  93. 93.
    C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura, and K. Nagayama, Colloid Polym. Sci. 277, 914 (1999).CrossRefGoogle Scholar
  94. 94.
    A. S. Dimitrov and K. Nagayama, Langmuir 12, 1303 (1996).CrossRefGoogle Scholar
  95. 95.
    P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).CrossRefGoogle Scholar
  96. 96.
    E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).CrossRefGoogle Scholar
  97. 97.
    V. Yannopapas, N. Stefanou, and A. Modinos, J. Phys.: Condens. Matter 9, 10261 (1997).CrossRefGoogle Scholar
  98. 98.
    D. J. Norris and Y. A. Viasov, in Photonic Crystals and Light Localization, edited by C. M. Soukoulis ( Kluwer, Dordrecht, 2001 ), p. 229.CrossRefGoogle Scholar
  99. 99.
    K. W.-K. Shung and Y. C. Tsai, Phys. Rev. B 48, 11265 (1993).CrossRefGoogle Scholar
  100. 100.
    Y. A. Vlasov, M. Deutch, and D. J. Norris, Appt Phys. Lett. 76, 1627 (2000).CrossRefGoogle Scholar
  101. 101.
    C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, IBM J. Res. und Dev. 45, 47 (2001).CrossRefGoogle Scholar
  102. 102.
    F. Chen, K. L. Stokes, W. Zhou, J. Fang, and C. B. Murray, Mat. Res. Soc. Symp. Proc. 691, G10. 2. 1 (2002).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • David J. Norris
    • 1
  • Yurii A. Vlasov
    • 2
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaUSA
  2. 2.Physical Sciences Department, Thin Films and Optical PhysicsIBM T. J. Watson Research CenterUSA

Personalised recommendations