Nanocrystalline Silicon-Silicon Dioxide Superlattices: Structural and Optical Properties

  • Leonid Tsybeskov
  • David J. Lockwood
Part of the Nanostructure Science and Technology book series (NST)


This chapter is focused on the fabrication and characterization of layered Si-based nanostructures, which have been called nanocrystalline silicon (nc-Si)—silicon dioxide superlattices [1]. Among the many semiconducting materials, silicon is one of the most studied and definitely the most important material for commercial microelectronics. During the last several decades, the exponential growth of electronic chip complexity and drastic decrease of transistor dimensions has highlighted new directions in electronic device evolution and the potential applicability of Si nanocrystals for nanoelectronics and integrated light-emitters. The latter was stimulated by the discovery of efficient light emission in different forms of Si nanostructures [2] and by the demonstration of a Si-based light-emitting device prototype integrated into conventional microelectronic circuitry [3]. Hence, the interest in reliable fabrication of Si based nanostructures with control over the nanocrystal size, shape, and crystallographic orientation has been growing continuously over the last decade. Recently, the application of Si nanocrystals in electronic devices was suggested and proved by the demonstration of a Si nanocrystal non-volatile memory and other devices utilizing the Coulomb blockade effect [4, 5].


Molecular Beam Epitaxy Crystallographic Orientation Rapid Thermal Annealing Acoustic Phonon Nanocrystal Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCoffrey and D. J. Lockwood, Appl. Phys. Lett. 72, 43 (1998).CrossRefGoogle Scholar
  2. 2.
    Light emission from Silicon: From Physics to Devices, Edited by D. J. Lockwood, Academic Press, San Diego, 1998.Google Scholar
  3. 3.
    K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, Silicon-based light-emitting devices integrated into microelectronic circuits, Nature, 384, 338 (1996).CrossRefGoogle Scholar
  4. 4.
    T. Baron, P. Gentile, N. Magnea, and P. Mur, Appl. Phys. Lett. 79, 1175 (2001).CrossRefGoogle Scholar
  5. 5.
    N. Takahashi, H. Ishikuro, and T. Hiramoto, Appl. Phys. Lett. 76, 209 (2000).CrossRefGoogle Scholar
  6. 6.
    M. G. Bawendi, P. J. Carroll, William L. Wilson, and L. E. Brus, J. Chem. Phys. 96, 946 (1992).CrossRefGoogle Scholar
  7. 7.
    Z.-H. Lu, D. J. Lockwood, and J.-M. Baribeau, Nature, 378, 258 (1995).CrossRefGoogle Scholar
  8. 8.
    Z.-H. Lu, D. J. Lockwood, and J.-M. Baribeau, Solid-State Electron. 40, 197 (1996).CrossRefGoogle Scholar
  9. 9.
    D. J. Lockwood, Z. H. Lu, and J.-M. Baribeau, Phys. Rev. Lett. 76, 539 (1996).CrossRefGoogle Scholar
  10. 10.
    G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, L. Tsybeskov, P. M. Fauchet, B. White, J. Diener, H. Heckler, D. Kovalev, and F. Koch, Nature 407, 358 (2000).CrossRefGoogle Scholar
  11. 11.
    G. F. Grom, PhD Thesis, University of Rochester Library, pp. 134, 2001.Google Scholar
  12. 12.
    L. Tsybeskov, G. F. Grom, R. Krishnan, L. Montes, P. M. Fauchet, D. Kovalev, J. Diener, V. Timoshenko, F. Koch, J. P. McCaffrey, H. J. Labbe, G. I. Sproule, D. J. Lockwood, Y. M. Niquet, C. Delerue and G. Allan, Europhysics Letters 55, (4), 2001, p. 552–558.CrossRefGoogle Scholar
  13. 13.
    P. D. Persans, A. F. Ruppert, B. Abeles, and T. Tiedje, Phys. Rev. B32, 5558 (1985).CrossRefGoogle Scholar
  14. 14.
    P. V. Santos, M. Hundhausen, L. Ley, and C. Viczian, J. Appl. Phys. 69, 778 (1991).CrossRefGoogle Scholar
  15. 15.
    J. Kakalios, H. Fritzche, N. Ibaraki, and S. R. Ovshinsky, J. Non-Cryst. Solids 66, 339 (1984).CrossRefGoogle Scholar
  16. 16.
    T. Sakurai and T. Sugano, J. Appl. Phys. 52, 2889 (1981).CrossRefGoogle Scholar
  17. 17.
    W. Y. Ching, Chun C. Lin, and Lester Guttman, Phys. Rev. B 16, 5488 (1977).CrossRefGoogle Scholar
  18. 18.
    A. F. Ruppert, P. D. Persans, G. J. Hughes, K. S. Liang, B. Abeles, and W. Lanford, Phys. Rev. B 44, 11381 (1991).CrossRefGoogle Scholar
  19. 19.
    P.D. Persans, A. Ruppert, B. Abeles, J. Non-Cryst. Solids 102, 130 (1988).CrossRefGoogle Scholar
  20. 20.
    Z.H. Lu, Solid State Electron. 40, 191 (1996).CrossRefGoogle Scholar
  21. 21.
    J. Gonzalez-Hernandez, R. Tsu, Appl. Phys. Lett. 42, 90 (1983).CrossRefGoogle Scholar
  22. 22.
    M. Zacharias, J. Heitmann, M. Schmidt, P. Streitenberger, Physica Ell, 245 ( (2001).Google Scholar
  23. 23.
    J.P. McCaffrey, private communication.Google Scholar
  24. 24.
    P. Wickboldt, D. Pang, W. Paul, J. H. Chen, F. Zhong, J. D. Cohen, D. L. Williamson and Y. Chen, Journal of Non-Crystalline Solids, 198–200, 567 (1996).CrossRefGoogle Scholar
  25. 25.
    L. Tsybeskov, not published.Google Scholar
  26. 26.
    L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCoffrey and D. J. Lockwood, Physica Status Solidi 165, 69 (1998).CrossRefGoogle Scholar
  27. 27.
    L. L. Chang, L. Esaki, W. E. Howard, R. Ludeke, and G. Schul, J. Vac. Sci. Technol. 10, 655 (1973).CrossRefGoogle Scholar
  28. 28.
    S. D. Walck and J. P. McCaffrey, Thin Solid Films, 30309, 399 (1997).CrossRefGoogle Scholar
  29. 29.
    S. T. Ngiam, K. F. Jensen, and K. D. Kolenbrander, J. Appl. Phys. 76, 8201 (1994).CrossRefGoogle Scholar
  30. 30.
    D. Reznik, C. H. 0lk, D. A. Neumann, and J. R. D. Copley, Phys. Rev. B 52, 116 (1995).CrossRefGoogle Scholar
  31. 31.
    H. Richter, Z. P. Wang and L. Ley, Sol. State Commun. 39, 626 (1981).CrossRefGoogle Scholar
  32. 32.
    I. H. Campbel, P. M. Fauchet, Sol. State Commun. 58, 739 (1986).CrossRefGoogle Scholar
  33. 33.
    S. T. Kshirsagar and J. S. Lannin, Phys. Rev. B 25, 2916 (1982).CrossRefGoogle Scholar
  34. 34.
    J. S. Lannin, L. J. Pilione, S. T. Kshirsagar, R. Messier, and R. C. Ross, Phys. Rev. B 26, 3506 (1982).CrossRefGoogle Scholar
  35. 35.
    P. A. Temple and C. E. Hathway, Phys. Rev. B 7, 3685 (1973).CrossRefGoogle Scholar
  36. 36.
    Y. Sasaki and M. Kitahara, J. Appl. Phys. 76, 4344 (1994).CrossRefGoogle Scholar
  37. 37.
    G. Mariotto, F. Ziglio and F. L. Jr. Freire, Journal of Non-Crystalline Solids, 19193, 253 (1995).CrossRefGoogle Scholar
  38. 38.
    N. Brunetto and G. Amato, Thin Solid Films, 297, 122 (1997).CrossRefGoogle Scholar
  39. 39.
    S. M. Rytov, Akust. Zh. 2, 71 (1956).Google Scholar
  40. 40.
    D. J. Lockwood, M. W. C. Dharma—wardana, J. —M. Baribeau, and D. C. Houghton, Phys. Rev. B 35, 2243–2251 (1987).CrossRefGoogle Scholar
  41. 41.
    C. Colvard, R. Merlin, and M. V. Klein, Phys. Rev. Lett. 45, 298 (1980).CrossRefGoogle Scholar
  42. 42.
    D. Royer and E. Dieulesaint, J. Acoust. Soc. Am. 76, 1438 (1984).CrossRefGoogle Scholar
  43. 43.
    M. A. Tamor and J. P. Wolfe, Phys. Rev. B 26, 5743 (1982) and references therein.Google Scholar
  44. 44.
    I. R. Cox-Smith, H. C. Liang, and R. O. Dillon, J. Vac. Sci. Technol. A 3, 674 (1985)CrossRefGoogle Scholar
  45. 45.
    G. D. Ivlev and E. I. Gatskevich, Applied Surface Science, 143, 265 (1999)CrossRefGoogle Scholar
  46. 46.
    J. B. Hopkins and L. A. Farrow, J. Appl. Phys. 59, 1103 (1986)CrossRefGoogle Scholar
  47. 47.
    Kohji Mizoguchi and Shin-ichi Nakashima, J. Appl. Phys. 65, 2583 (1989)CrossRefGoogle Scholar
  48. 48.
    L. Tsybeskov, not publishedGoogle Scholar
  49. 49.
    R. A. Street, Technology and Applications of Amorphous Silicon, Springer Series in Materials Science, vol. 37, Springer, Berlin, 2000, pp. 94–146 and the references thereinGoogle Scholar
  50. 50.
    H. F. Wolf, Silicon Semiconductor Data, Pergamon Press, NY 1969, pp. 648Google Scholar
  51. 51.
    L. T. Canham, APL 37, 1046 (1990)Google Scholar
  52. 52.
    A. G. Cullis and L. T. Canham, Nature, 353, 335 (1991)CrossRefGoogle Scholar
  53. 53.
    L. Tsybeskov, Ju. v. Vandyshev, and P. M. Fauchet, Phys. Rev. B 49, 7821 (1994)CrossRefGoogle Scholar
  54. M. Brandt et al,Solid State Commun. 81 307 (1992)Google Scholar
  55. 55.
    Y. Kanemitsu, Phys. Rep. 263, 1 (1995)CrossRefGoogle Scholar
  56. 56.
    D. Kovalev, H. Heckler, B. Averboukh, M. Ben-Chorin, M. Schwartzkopff, and F. Koch, Phys. Rev. B 57, 3741 (1998)CrossRefGoogle Scholar
  57. 57.
    A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997)CrossRefGoogle Scholar
  58. 58.
    Reuben T. Collins, Philippe M. Fauchet, and Michael A. Tischler, Phys. Today 50, 83 (1997)Google Scholar
  59. 59.
    D. Kovalev, H. Heckler, G. Polisski, J. Diener and F. Koch, Optical Materials 17, 35 (2001)CrossRefGoogle Scholar
  60. 60.
    D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, and F. Koch, Phys. Rev. Lett. 81, 2803 (1998)CrossRefGoogle Scholar
  61. 61.
    M. Fujii, D. Kovalev, J. Diener, F. Koch, S. Takeoka, and S. Hayashi, J. Appl. Phys. 88, 5772 (2000)CrossRefGoogle Scholar
  62. 62.
    L. Pavesi and M. Ceschini, Phys. Rev. B 48, 17625 (1993)CrossRefGoogle Scholar
  63. 63.
    H. Heckler, D. Kovalev, G. Polisski, N. N. Zinov’ev, and F. Koch, Phys. Rev. B 60, 7718 (1999)CrossRefGoogle Scholar
  64. 64.
    C. H. Perry, F. Lu, F. Namavar, N. M. Kalkhoran, and R. A. Soref, Appl. Phys. Lett. 60, 3117 (1992)CrossRefGoogle Scholar
  65. 65.
    J. Diener, D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Rev. B 63, 73302 (2001)CrossRefGoogle Scholar
  66. 66.
    L. Tsybeskov and P. M. Fauchet, Appl. Phys. Lett. 64, 1983 (1994)CrossRefGoogle Scholar
  67. 67.
    L. Tsybeskov MRS Bulletin 23 (4), 1998Google Scholar
  68. 68.
    J. Heitmann, R. Scholz, M. Zacharias, J. Non-Crys. Solids, 299–302 (2002), 678–682Google Scholar
  69. 69.
    S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Leonid Tsybeskov
    • 1
  • David J. Lockwood
    • 2
  1. 1.Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Institute for Microstructural SciencesNational Research CouncilOttawaCanada

Personalised recommendations