Porous Silicon as an Open Dielectric Nanostructure: an Ensemble of Aspheric Silicon Nanocrystals

  • J. Diener
  • N. Künzner
  • E. Gross
  • G. Polisski
  • D. Kovalev
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Reducing the dimensions of semiconductor structures is nowadays a well established field in solid state physics, not at least on demand by the preceding miniaturization in microelectronics. To confine carriers in two dimensions was one of the first steps towards the current nano-science and technology. At present, three dimensional confinement of carriers in quantum dots or nanocrystals (NCs) with typical dimensions of the order of nanometers is a standard technique to modify the physical properties known from the bulk material. One of the most prominent consequences arising from the reduced dimensionality is an altered density of states which is accompanied by a widening of the bandgap with decreasing size due to quantum confinement. Therefore the optical properties, especially the photoluminescence (PL), of such objects differ significantly from that of the bulk material.

Keywords

Porous Silicon Polarization Direction Detection Energy Distribute Bragg Reflector Exciting Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Ekimov, A. A. Onushchenko and V. A. Tzekhomskii, Sov. Phys. Chem. Glass 6, 511 (1980).Google Scholar
  2. 2.
    A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 301 (1982).Google Scholar
  3. 3.
    L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
  4. 4.
    V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 856 (1991).Google Scholar
  5. 5.
    A. G. Cullis, L. T. Canham and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).Google Scholar
  6. 6.
    L. Canham, Nature 408, 411 (2000).Google Scholar
  7. 7.
    L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franco and F. Priolo, Nature 408, 440 (2000).Google Scholar
  8. 8.
    P. Fauchet, Physics World 14, 19 (2001).Google Scholar
  9. 9.
    K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, Nature 384, 338 (1996).CrossRefGoogle Scholar
  10. G. Vincent, Appl. Phys. Lett.64, 2367 (1994).Google Scholar
  11. E. Yablonovitch, Phys. Rev. Lett.58, 2059 (1987).Google Scholar
  12. 12.
    E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).CrossRefGoogle Scholar
  13. 13.
    O. Bisi, S. Ossicini and L. Pavesi, Surface Science Reports 38, 1 (2000).CrossRefGoogle Scholar
  14. 14.
    D. Kovalev, H. Heckler, G. Polisski and F. Koch, phys. stat. sol. (b) 215, 871 (1999).CrossRefGoogle Scholar
  15. 15.
    A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956).Google Scholar
  16. 16.
    K. H. Jung, S. Shih and D. L. Kuong, J. Electrochem. Soc. 140, 3046 (1993).CrossRefGoogle Scholar
  17. 17.
    A. Halimaoui, in Porous Silicon Science and Technology, edited by J. C. Vial and J. Derrien ( Springer, Berlin, 1995 ) p. 33.CrossRefGoogle Scholar
  18. 18.
    L. T. Canham, A. G. Cullis, C. Pickering, O. D. Dosser, T. I. Cox and T. P. Lynch, Nature 368, 133 (1994).CrossRefGoogle Scholar
  19. 19.
    St. Frohnhoff, R. Arens-Fischer, T. Heinrich, J. Fricke, M. Arntzen and W. Theiss, Thin Solid Films 255, 115 (1995).CrossRefGoogle Scholar
  20. 20.
    V. Lehmann, R. Stengl and A. Luigart, Materials Science and Engineering B69–70, 11 (2000).Google Scholar
  21. 21.
    M. Christophersen, J. Carstensen, A. Feuerhake and H. Föll, Materials Science and Engineering B69–70, 194 (2000).Google Scholar
  22. 22.
    D. A. G. Bruggeman, Ann. Phys. (Paris) 24, 636 (1935).Google Scholar
  23. 23.
    D. Kovalev, G. Polisski, M. Ben-Chorin, J. Diener and F. Koch, J. Appl. Phys. 80, 5978 (1996).CrossRefGoogle Scholar
  24. 24.
    J. E. Spanier and I. P. Herman, Phys. Rev. B 61, 10437 (2000).CrossRefGoogle Scholar
  25. 25.
    P. Menna, G. Di Francia and V. La Ferrara, Solar Energy Materials and Solar Cells 37, 13 (1995).CrossRefGoogle Scholar
  26. 26.
    H. F. Arrand, T. M. Benson, A. Loni, M. G. Krueger, M. Thönissen and H. Luth, Electron. Lett. 33, 1724 (1997).CrossRefGoogle Scholar
  27. 27.
    M. Araki, H. Koyama and N. Koshida, Appl. Phys. Lett. 69, 2956 (1996).CrossRefGoogle Scholar
  28. 28.
    V. Mulloni and L. Pavesi, Appl. Phys. Lett. 76, 2523 (2000).CrossRefGoogle Scholar
  29. 29.
    M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lath, H. Munder, W. Theiß, M. Wernke and P. Grosse, J. Phys. D 27, 1333 (1994).Google Scholar
  30. 30.
    C. Mazzoleni and L. Pavesi, Appl. Phys. Lett. 67, 2983 (1995).CrossRefGoogle Scholar
  31. 31.
    P. A. Snow, E. K. Squire, P. St. J. Russell and L. T. Canham, J. Appl. Phys. 86, 1781 (1999).CrossRefGoogle Scholar
  32. 32.
    J. Diener, D. Kovalev, G. Polisski and F. Koch, Phys. Stat. Sol. (a) 182, 341 (2000).CrossRefGoogle Scholar
  33. 33.
    J. Diener, D. Kovalev, G. Polisski, N. Künzner and F. Koch, Phys. Stat. Sol. (b) 224, 297 (2000).CrossRefGoogle Scholar
  34. 34.
    A. V. Andrianov, D. I. Kovalev, N. N. Zinov’ev and I. D. Yaroshetskü, JETP Lett. 58, 427 (1993).Google Scholar
  35. 35.
    H. Koyama and N. Koshida, Phys. Rev. B 52, 2649 (1995).CrossRefGoogle Scholar
  36. 36.
    S. V. Gaponenko, E. P. Petrov, U. Waggon, O. Wind, C. Klingshim, Y. H. Xie, I. N. Germanenkom and A. P. Stupka, J. Lumin. 70, 364 (1996).CrossRefGoogle Scholar
  37. 37.
    P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane and D. Brumhead, J. Lumin. 57, 257 (1993).CrossRefGoogle Scholar
  38. 38.
    G. Fishman, R. Romestain and J. C. Vial, J. Lumin. 57, 235 (1993).CrossRefGoogle Scholar
  39. 39.
    J. Diener, M. Ben-Chorin, D. Kovalev, S. Ganichev and F. Koch, Thin Solid Films 276, 116 (1996).CrossRefGoogle Scholar
  40. 40.
    J. Diener, D. Kovalev, G. Polisski, H. Heckler and F. Koch, Phys. Stat. Sol.(b) 214 R13 (1999).Google Scholar
  41. 41.
    for example G.E. Pikus and E.L. Ivchenko, Excitons: Modern Problems in Con-densed Matter Sciences, ed. by E.I. Rashba and M.D. Sturge, North-Holland, Amsterdam (1982).Google Scholar
  42. 42.
    F. Meier and B.P. Zakharchenya (Eds.), Optical Orientation, Modem Problems in Condensed Matter Sciences, North-Holland Publ. Co., Amsterdam (1984).Google Scholar
  43. 43.
    P. Lavallard and R.A. Suris, Solid State Commun. 25, 267 (1995).CrossRefGoogle Scholar
  44. 44.
    H. Koyama and P. Fauchet, Appl. Phys. Lett. 77, 2316 (2000).CrossRefGoogle Scholar
  45. 45.
    M. G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carrol, T.M. Jeddju, M.L. Stegerwald and L. Brus, Phys. Rev. Lett. 65, 1623 (1990).CrossRefGoogle Scholar
  46. 46.
    M. Chamarro, C. Gourdon and P. Lavallard, J. Lumin. 70, 222 (1996).CrossRefGoogle Scholar
  47. 47.
    D. Kovalev, M. Ben-Chorin, J. Diener, B. Averboukh, G. Polisski and F. Koch, Phys. Rev. Lett. 79, 119 (1997).CrossRefGoogle Scholar
  48. 48.
    D. Kovalev, M. Ben-Chorin, J. Diener, F. Koch, Al. Efros, M. Rosen, N. Gippius and S. Tikhodeev, Appl. Phys. Lett. 67, 1585 (1995).CrossRefGoogle Scholar
  49. 49.
    D. Kovalev, M. Ben-Chorin, J. Diener, F. Koch, A. Kux, Al. Efros, M. Rosen, N. Gippius and S. Tikhodeev, Thin Solid Films 276, 120 (1996).CrossRefGoogle Scholar
  50. 50.
    N. Gippius, S. Tikhodeev, Al. Efros, M. Rosen, D. Kovalev, M. Ben-Chorin, J. Diener and F. Koch, in Surface/Interface and Stress Effects in Electronic Material Nanostructures, Symposium. Mater. Res. Soc, Pittsburgh, PA, USA, 1996, p. 203.Google Scholar
  51. 51.
    L. D. Lanau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1984). Ellipsoids: E. C. Stoner, Phil. Mag. 36, 803 (1945).Google Scholar
  52. 52.
    A. I. Ekimov and Al. L. Efros, Phys. Stat. sol.(b)150, 627 (1988).Google Scholar
  53. 53.
    D. Kovalev, H. Heckler, B. Averboukh, M. Ben-Chorin, M. Schwarzkopff and F. Koch, Phys. Rev. B 57, 3741 (1998).CrossRefGoogle Scholar
  54. 54.
    V. Grivickas, J. Linnros and JA. Tellefsen, Thin Solid Films 255, 208 (1995).CrossRefGoogle Scholar
  55. 55.
    D. Kovalev, B. Averboukh, M. Ben-Chorin, F. Koch, Al. L. Efros and M. Rosen, Phys. Rev. Lett. 77, 2089 (1996).CrossRefGoogle Scholar
  56. 56.
    Al. L. Efros, M. Rosen, B. Averboukh, D. Kovalev, M. Ben-Chorin and F. Koch, Phys. Rev. B 56, 3875 (1997).CrossRefGoogle Scholar
  57. 57.
    M. Nirmal, B. Dabbousi, M. Bawendi, J. Macklin, J. Trautman, T. Harris and L. Brus, Nature 383, 802 (1996).CrossRefGoogle Scholar
  58. 58.
    Al. L. Efros and M. Rosen, Phys. Rev. Lett. 78, 1110 (1997).CrossRefGoogle Scholar
  59. 59.
    S. Empedocles and M. Bawendi, Science 278, 2114 (1997).CrossRefGoogle Scholar
  60. 60.
    R. Neuhauser,K. Shimizu,W. Woo, S. Empedocles and M. Bawendi, Phys. Rev. Lett. 85, 3301 (2000).Google Scholar
  61. 61.
    D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, F. Koch, Al. L. Efros and M. Rosen, Phys. Rev. B 61, 15841 (2000).CrossRefGoogle Scholar
  62. 62.
    M. E. Schmidt, S. A. Blanton, M. A. Hines and P. Guyot-Sionnest, Phys. Rev. B 53, 12629 (1996).CrossRefGoogle Scholar
  63. 63.
    J. Diener, D. Kovalev, G. Polisski and F. Koch, Appl. Phys. Lett. 74, 3350 (1999).CrossRefGoogle Scholar
  64. 64.
    J. Diener, Y. R. Shen, D. Kovalev, G. Polisski and F. Koch, Phys. Rev. B 58, 12629 (1998).CrossRefGoogle Scholar
  65. 65.
    Y. R. Shen The Principles of Nonlinear Optics, John Wiley \and Sons, Inc., 1984.Google Scholar
  66. 66.
    V. Lin, K. Motesharei, K. Dancil, M. Sailor and M. Ghadiri, Science 278, 840 (1997).CrossRefGoogle Scholar
  67. 67.
    Jun Gao, Ting Gao and M. Sailor, Appl. Phys. Lett. 77, 901 (2000).CrossRefGoogle Scholar
  68. 68.
    H. A. MacLeod, Thin Optical Filters, Adam Hilger, London (1969).Google Scholar
  69. 69.
    T. Kawazoe and Y. Masumoto, Phys. Rev. Lett. 77, 4942 (1996).CrossRefGoogle Scholar
  70. 70.
    Y. Masumoto, J. Lumin. 70, 386 (1996).CrossRefGoogle Scholar
  71. 71.
    D. Kovalev, H. Heckler, B. Averboukh, M. Ben-Chorin, M. Schwarzkopff and F. Koch, Phys. Rev. B 57, 3741 (1998).CrossRefGoogle Scholar
  72. 72.
    D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner and F. Koch, Phys. Rev. B 61, 4485 (2000).CrossRefGoogle Scholar
  73. 73.
    G. Polisski, B. Averboukh, D. Kovalev and F. Koch, Appl. Phys. Lett. 70, 1116 (1997).CrossRefGoogle Scholar
  74. 74.
    S. Zangooie, R. Jansson and H. Arvin, J. Mater. Res 14, 4167 (1999).CrossRefGoogle Scholar
  75. 75.
    M. Kompan, J. Salonen, and I. Shabanov, Journal of Experimental and Theoretical Physics 90, 324 (2000).CrossRefGoogle Scholar
  76. 76.
    D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner and F. Koch, Phys. Stat. Sol.(a) 180, r8-rl 1 (2000).Google Scholar
  77. 77.
    D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko and F. Koch, Appl. Phys. Lett. 78, 916 (2001).CrossRefGoogle Scholar
  78. 78.
    H. A. Lorentz, Collected Papers, Martinus Nijhoff, The Hague 1936 (Vol. II, p. 79 ).Google Scholar
  79. 79.
    J. Pasternak and K. Vedam, Phys. Rev. B 3, 2567 (1971).CrossRefGoogle Scholar
  80. 80.
    H. D. Fuchs, M. Stutzmann, M. S. Brandt, M. Rosenbauer and J. Weber, Phys. Rev. B 48, 8172 (1993).CrossRefGoogle Scholar
  81. 81.
    V. Yu. Timoshenko, Th. Dittrich, V. Lysenko, M. G. Lisachenko and F. Koch, Phys. Rev. B 64, (2001) 85314CrossRefGoogle Scholar
  82. 82.
    E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, F. Koch, J. Appl. Phys. 90, (2001) 3529.CrossRefGoogle Scholar
  83. 83.
    J. Diener, N. Künzner, D. Kovalev, E. Gross, V. Yu. Timoshenko, G.Polisski and F. Koch, Appl. Phys. Lett. 78, (2001) 3887.Google Scholar
  84. 84.
    J. Diener, N. Künzner, D. Kovalev, E. Gross, F. Koch, J. Appl. Phys. 91, (2002) 6704.CrossRefGoogle Scholar
  85. 85.
    J. Diener, N. Künzner, D. Kovalev, E. Gross, F. Koch, M. Fujii, Phys. Stat. Sol. (a) 197, (2003) 582CrossRefGoogle Scholar
  86. 86.
    N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G.Polisski, F. Koch and M. Fujii, Optics Letters 26 (2001) 1265.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • J. Diener
    • 1
  • N. Künzner
    • 1
  • E. Gross
    • 1
  • G. Polisski
    • 1
  • D. Kovalev
    • 1
  1. 1.Physik-Department E16Technische Universität MünchenGarchingGermany

Personalised recommendations