Novel Device Applications of Stranski-Krastanov Quantum Dots

  • Karl Brunner
  • Artur Zrennert
Part of the Nanostructure Science and Technology book series (NST)

Abstract

The development of information technology is certainly one of the most important achievements of applied solid state physics. Most of the corresponding key components are based on semiconductor devices with electronic or opto-electronic functions1. After decades of intense research, the performance of those devices is excellent. But information technology has an enormous impact on human society and hence there is an increasing demand for further developments.

Keywords

Valence Band Tunneling Time Island Nucleation Quantum Well Infrared Photodetector Reset Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Zhores I. Alferov Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology, Rev. Mod. Phys. 73, 767 (2001).CrossRefGoogle Scholar
  2. 2.
    Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).CrossRefGoogle Scholar
  3. 3.
    See for example: M. Bayer, A. Schmidt, A. Forchel, F. Faller, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, Phys. Rev. Lett. 74, 3439 (1995).CrossRefGoogle Scholar
  4. 4.
    See for example: S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven Phys. Rev. Lett. 77, 3613 (1996).CrossRefGoogle Scholar
  5. 5.
    I. N. Stranski, and L. von Krastanow, Akad. Wiss. Lit. Mainz Math. Naturwiss. K1. IIb 146, 797 (1939).Google Scholar
  6. 6.
    For a review see: D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, J. Wiley and Sons, Chichester (1999).Google Scholar
  7. 7.
    T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 64, 788 (1990).CrossRefGoogle Scholar
  8. 8.
    K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle and G. Weimann, Phys. Rev. Lett. 69, 3216 (1992).CrossRefGoogle Scholar
  9. 9.
    K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, Phys. Rev. Lett. 73, 1138 (1994).CrossRefGoogle Scholar
  10. 10.
    A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 72, 3382 (1994).CrossRefGoogle Scholar
  11. 11.
    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. W. Kouwenhoven„ D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).CrossRefGoogle Scholar
  12. 12.
    Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).CrossRefGoogle Scholar
  13. 13.
    D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).CrossRefGoogle Scholar
  14. 14.
    S. Fafard, Z. Wasilewski, J. McCaffrey, S. Raymond, and S. Charbonneau, Appl. Phys. Lett. 68, 991 (1996).CrossRefGoogle Scholar
  15. 15.
    B. R. Bennett, R. Magno, and B. V. Shanabrook, Appl. Phys. Lett. 68, 505 (1996).CrossRefGoogle Scholar
  16. 16.
    E. Alphandéry, R. J. Nicholas, N. J. Mason, and B. Zhang, Appl. Phys. Lett. 74, 2041 (1999).CrossRefGoogle Scholar
  17. 17.
    M. C. H. Liao, Y. H. Change, C. C. Tsai, M. H. Chieng, and Y.F. Chen, J. Appt. Phys. 86, 4694 (1999).CrossRefGoogle Scholar
  18. 18.
    O. G. Schmidt, C. Lange, K. Ebert, Appl. Phys. Lett. 75, 1905 (1999).CrossRefGoogle Scholar
  19. 19.
    T. I. Kamins, G. Medeiro-Ribeiro, D. A. A. Ohlberg, R. S. Williams, J. Appt. Phys. 85 1159 (1999).Google Scholar
  20. 20.
    V. A. Shchukin, N. N. Ledentsov, P. S. Kop’ev, and D. Bimberg, Phys. Rev. Lett. 75, 2968 (1995).CrossRefGoogle Scholar
  21. 21.
    S. Christiansen, M. Albrecht, H. P. Strunk, and H. J. Maier, Appl. Phys. Lett. 64, 3617 (1994).CrossRefGoogle Scholar
  22. 22.
    M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 54, R2300 (1996).CrossRefGoogle Scholar
  23. 23.
    J. H. Seok, and J. Y. Kim, Appl. Phys. Lett. 78, 3124 (2001).CrossRefGoogle Scholar
  24. 24.
    M. Herbst, C. Schramm, K. Brunner, T. Asperger, H. Riedl, G. Abstreiter, A. Vörckel, H. Kurz, and E. Müller, Mat. Ci. Eng. B 89, 54 (2002).CrossRefGoogle Scholar
  25. 25.
    T. S. Kuan and S. S. Iyer, Appl. Phys. Lett. 59, 2242 (1991).CrossRefGoogle Scholar
  26. 26.
    Karl Brunner, Si/Ge Nanostructures,Rep. Prog. Phys. 65 27–72 (2002).Google Scholar
  27. 27.
    V. Le Thanh, V. Yam, P. Boucaud, F. Fortuna, C. Ulysse, D. Bouchier, L. Vervoort, and J.-M. Lourtioz, Phys. Rev. B 60, 5851 (1999).CrossRefGoogle Scholar
  28. 28.
    J. Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76, 1675 (1996).CrossRefGoogle Scholar
  29. 29.
    G. Springholz, V. Holy, M. Pinczolits, and G. Bauer, Science 282, 734 (1998).CrossRefGoogle Scholar
  30. 30.
    V. Holy, G. Springholz, M. Pinczolits, and G. Bauer, Phys. Rev. Lett. 83, 356 (1999).CrossRefGoogle Scholar
  31. 31.
    K. Brunner, J. Zhu, G. Abstreiter, O. Kienzle, and F. Ernst, phys. stat. sol. (b) 224, 531 (2001).Google Scholar
  32. 32.
    G. Jin, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 76, 3591 (2000)CrossRefGoogle Scholar
  33. 33.
    J. Zhu, K. Brunner, and G. Abstreiter, Appl. Phys. Lett. 73, 620 (1998).CrossRefGoogle Scholar
  34. 34.
    Y. H. Phang, C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and E. Kasper, Phys. Rev. B 50, 14435 (1994).CrossRefGoogle Scholar
  35. 35.
    K. H. Goetz, D. Bimberg, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, J. Appt. Phys. 54, 4543 (1983).CrossRefGoogle Scholar
  36. 36.
    C. G. Van de Walle, Phys. Rev. B 39, 1871 (1981).Google Scholar
  37. 37.
    B. A. Foreman, Phys. Rev. B 49, 1757 (1994).CrossRefGoogle Scholar
  38. 38.
    P. Bhattacharya, (Ed.), Properties of Lattice-Matched and Strained Indium Gallium Arsenide, 35–40, INSPEC, London (1993).Google Scholar
  39. 39.
    U. Hohenester and E. Molinari, Phys. Stat. Sol., 221, 19 (2000).CrossRefGoogle Scholar
  40. 40.
    M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276–14287 (1993).CrossRefGoogle Scholar
  41. 41.
    G. Abstreiter, Semiconductors and Semimetals Vol. 49, 37–76 (Academic Press, 1998 ).Google Scholar
  42. 42.
    S. K. Zhang, H. J. Zhu, F. Lu, Z. M. Jiang, and X. Wang, Phys. Rev. Lett. 80, 3340 (1998).CrossRefGoogle Scholar
  43. 43.
    C. Miesner, T. Asperger, K. Brunner, and G. Abstreiter, Appl. Phys. Lett. 77, 2704 (2000).CrossRefGoogle Scholar
  44. 44.
    T. Asperger, C. Miesner, K. Brunner, and G. Abstreiter, Thin Solid Films 380, 227–229 (2000).CrossRefGoogle Scholar
  45. 45.
    G. Schedelbeck, W. Wegscheider, M. Bichler, and G. Abstreiter, Science 278, 1792–1795 (1997).CrossRefGoogle Scholar
  46. 46.
    M. O. Lipinski, H. Schuler, O. G. Schmidt, K. Eberl, and N. Y. Jin-Phillipp, Appl. Phys. Lett. 77, 1789 (2000).CrossRefGoogle Scholar
  47. 47.
    O. G. Schmidt and K. Eberl, Phys. Rev. Lett. 61 13721 (2000).Google Scholar
  48. 48.
    D. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. 73, 1937 (1998).CrossRefGoogle Scholar
  49. 49.
    L. Chu, A. Zrenner, G. Böhm, and G. Abstreiter, Appl. Phys. Lett. 75, 3599 (1999).CrossRefGoogle Scholar
  50. 50.
    C. Miesner, O. Röthig, K. Brunner, and G. Abstreiter, Appl. Phys. Lett. 76, 1027 (2000).CrossRefGoogle Scholar
  51. 51.
    T. Fromherz, W. Mac, C. Miesner, K. Brunner, G. Bauer, and G. Abstreiter, Appl. Phys. Lett. 80, 2093 (2002).CrossRefGoogle Scholar
  52. 52.
    T. Fromherz, P. Kruck, M. Helm, G. Bauer, J. F. Nützel, and G. Abstreiter, Appl. Phys. Lett. 68, 3611 (1996).CrossRefGoogle Scholar
  53. 53.
    V. Ryzhii, Semicond. Sci. Technol. 11, 759 (1996).CrossRefGoogle Scholar
  54. 54.
    C. Miesner, K. Brunner, and G. Abstreiter, Infrared Physics and Technology 42, 461–465 (2001).CrossRefGoogle Scholar
  55. 55.
    D. Bougeard, K. Brunner, and G. Abstreiter, Proc. of ISCS 2001, IOP Conf. Series, (submitted).Google Scholar
  56. 56.
    L. Chu, A. Zrenner, M. Bichler, and G. Abstreiter, Appl. Phys. Lett. 79, 2249 (2001).CrossRefGoogle Scholar
  57. 57.
    D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).CrossRefGoogle Scholar
  58. 58.
    M. Bayer and A. Forchel, Phys. Rev. B 65, 41308 (2002).CrossRefGoogle Scholar
  59. 59.
    S. Muto, Jpn. J. Appl. Phys., Part 2 34, L210 (1995).Google Scholar
  60. 60.
    J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez, Phys. Rev. B 41, 8564 (1990).CrossRefGoogle Scholar
  61. 61.
    S. Zimmermann, A. Wixforth, J. P. Kotthaus, W. Wegscheider, M. Bichler, Science 283, 1292 (1998).CrossRefGoogle Scholar
  62. 62.
    P. Boni, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).Google Scholar
  63. 63.
    G. Yusa and H. Sakaki, Appl. Phys. Lett. 70, 345 (1997).CrossRefGoogle Scholar
  64. 64.
    J. J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Böhm, and G. Abstreiter, Appl. Phys. Lett., 73 2618 (1998).CrossRefGoogle Scholar
  65. 65.
    A. J. Shields, M. P. O’Sullivan, I. Faner, D. A. Ritchie, R. A. Hogg, M. L. Leadbeater, C. E. Norman, and M. Pepper, Appl. Phys. Lett. 76, 3673 (2000).CrossRefGoogle Scholar
  66. 66.
    T. Lundstrom, W. Schoenfeld, H. Lee, P. M. Petroff, Science 286, 2312 (1999).CrossRefGoogle Scholar
  67. 67.
    M. Grundmann, 0. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).CrossRefGoogle Scholar
  68. 68.
    M. J. Steer, D. J. Mowbray, W. R. Tribe, M. S. Skolnick, and M. D. Sturge, Phys. Rev. B 54, 17738 (1996).CrossRefGoogle Scholar
  69. 69.
    F. Findeis, A. Zrenner, G. Böhm, and G. Abstreiter, Phys. Rev. B 61, R10579 (2000).CrossRefGoogle Scholar
  70. 70.
    K. Imamura, Y. Sugiyama, Y. Nakata, S. Muto, and N. Yokoyama, Jpn. J. Appl. Phys. 34, L1445 (1995).CrossRefGoogle Scholar
  71. 71.
    H. Pettersson, L. Bâât, N. Carlsson, W. Seifert, and L. Samuelson, Appl. Phys. Lett. 79, 78 (2001).CrossRefGoogle Scholar
  72. 72.
    F. Findeis, A. Zrenner, G. Böhm, G. Abstreiter, Phys. Stat. Sol. B 224, 337 (2001).CrossRefGoogle Scholar
  73. 73.
    S. Luryi, A. Kastalsky, and J. C. Bean, IEEE Trans. Electron. Devices 31, 1135 (1984).CrossRefGoogle Scholar
  74. 74.
    K. Bernhard-Höfer, A. Zrenner, J. Brunner, G. Abstreiter, F. Wittmann, and I. Eisele, Appl. Phys. Lett. 66, 2226 (1995).CrossRefGoogle Scholar
  75. 75.
    B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, Appl. Phys. Lett. 73, 3504 (1998).CrossRefGoogle Scholar
  76. 76.
    H. Heidemeyer, S. Kiravittaya, C. Müller, N. Y. Jin-Phillipp, and O. G. Schmidt Appl. Phys. Lett. 80, 1544 (2002).Google Scholar
  77. 77.
    A. Zrenner, J. Chem. Phys. 112, 7790 (2000).CrossRefGoogle Scholar
  78. 78.
    F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, Appl. Phys. Lett. 78, 2958 (2001).CrossRefGoogle Scholar
  79. 79.
    R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature 405, 926 (2000).CrossRefGoogle Scholar
  80. 80.
    F. Findeis, M. Baier, A. Zrenner, M. Bichler, and G. Abstreiter, Phys. Rev. B 63, 121309 (R) (2001).Google Scholar
  81. 81.
    F. Findeis, M. Baier, A. Zrenner, M. Bichler, G. Abstreiter, U. Hohenester, and E. Molinari, Phys. Rev. B 63, 121309 (R) (2001).Google Scholar
  82. 82.
    J. J. Finley, P. W. Fry, A. D. Ashmore, A. Lemaître, A. I. Tartakovskii, R. Oulton, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, P. D. Buckle, and P. A. Maksym, Phys. Rev. B 63, 161305 (R) (2001).Google Scholar
  83. 83.
    M. Markmann, A. Zrenner, G. Böhm, and G. Abstreiter, Phys. stat. sol. (a) 164, 301 (1997).CrossRefGoogle Scholar
  84. 84.
    Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2001).CrossRefGoogle Scholar
  85. 85.
    E. Beham, A. Zrenner, F. Findeis, M. Bichler, and G. Abstreiter, Appt Phys. Lett. 79, 2808 (2001).CrossRefGoogle Scholar
  86. 86.
    E. Beham, A. Zrenner, and G. Böhm, Physica E 7, 359 (2000).CrossRefGoogle Scholar
  87. 87.
    A. Zrenner, A. Schaller, M. Markmann, M. Hagn, M. Arzberger, D. Henry, G. Abstreiter, G. Böhm, and G. Weimann, Appl. Surf. Sci. 123/124, 356 (1998).Google Scholar
  88. 88.
    F. Findeis, A. Zrenner, G. Böhm, and G. Abstreiter, Solid State Commun. 114, 227 2000 ).CrossRefGoogle Scholar
  89. 89.
    R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A. Hoffmann, A. Madhukar, D. Bimberg, Phys. Rev. B, 57, 9050 (1998).CrossRefGoogle Scholar
  90. 90.
    P. W. Fry, 1. E. Itskevich, D. J. Mowbray, M. S. Skolnik, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, Phys. Rev. Lett., 84, 733 (2000).Google Scholar
  91. 91.
    L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms ( Wiley, New York, 1975 ).Google Scholar
  92. 92.
    E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J.M. Garcia, and P.M. Petroff, Phys. Rev. Lett. 80, 4991 (1998).CrossRefGoogle Scholar
  93. 93.
    L. Landin, M.S. Miller, M.-E. Pistol, C.E. Pryor, L. Samuelson, Science 280, 262 (1998).CrossRefGoogle Scholar
  94. 94.
    F. Findeis, A. Zrenner, G. Böhm, and G. Abstreiter, Solid State Commun. 114, 227 2000 ).CrossRefGoogle Scholar
  95. 95.
    M. Bayer, O. Stem, P. Hawrylak, S. Fafard, A. Forchel, Nature 405, 187 (2000).CrossRefGoogle Scholar
  96. 96.
    A. Yariv, Optical Electronics, CBS College Publishing (1985).Google Scholar
  97. 97.
    I. I. Rabi, Phys. Rev. 51, 652 (1937).CrossRefGoogle Scholar
  98. 98.
    T. H. Stievater, Xiaoqin Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87, 133603 (2001).Google Scholar
  99. 99.
    H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, Phys. Rev. Lett. 87, 247401 (2001).Google Scholar
  100. 100.
    H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, Jr., and C. K. Shih, Phys. Rev. Lett. 88, 087401 (2002).Google Scholar
  101. 101.
    P. Borri, W. Langbein, S. Schneider, U. Woggon,R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).Google Scholar
  102. 102.
    A. Zrenner, German Patent No. DE 100 06 909 C 1, April 4, 2001.Google Scholar
  103. 103.
    H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M. H. Devoret, Europhys. Lett. 17, 259 (1992).CrossRefGoogle Scholar
  104. 104.
    See for example: “The Physics of Quantum Information”, ed. By D. Bouwmeester, A. Ekert, and A. Zeilinger ( Springer, Berlin, 2000 ).Google Scholar
  105. 105.
    M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).CrossRefGoogle Scholar
  106. 106.
    J.-M. Gerard and B. Gayral, IEEE J. Lightwave Technol. 17, 2089 (1999).CrossRefGoogle Scholar
  107. 107.
    P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000)CrossRefGoogle Scholar
  108. 108.
    E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram Phys. Rev. Lett. 87, 183601 (2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Karl Brunner
    • 1
  • Artur Zrennert
    • 2
  1. 1.Walter Schottky InstitutTechnische Universität MünchenGarchingGermany
  2. 2.Universität PaderbornPaderbornGermany

Personalised recommendations