Carrier dynamics, optical nonlinearities, and optical gain in nanocrystal quantum dots

  • Victor I. Klimov
Part of the Nanostructure Science and Technology book series (NST)


Nanoscale semiconductor particles in which carrier motion is restricted in all three dimensions are often referred to as semiconductor quantum dots (QDs). While the crystalline structure of the bulk solid is maintained in QDs, the three-dimensional (3D) quantum confinement imparted by the nanoscale size causes the bulk energy bands to collapse into discrete, atomic-like levels that exhibit strong size dependence.1,2 One of the approaches to fabricating sub-10 nm semiconductor nanoparticles is through chemical synthesis. Chemically synthesized QDs are also called nanocrystals or nanocrystal QDs. Synthetic methods are particularly well developed for QDs of II–VI semiconductors. The two principle chemical routes for fabrication of these QDs are high-temperature precipitation in molten glasses3,4 and colloidal synthesis using, e.g., organometallic reactions.5 Glass samples provide rigidity and environmental stability; however, they have a broad QD size distribution (typically greater than 20%) and a large number of surface defects. A much higher level of synthetic flexibility and control is provided by colloidal QDs that can be chemically manipulated in a variety of ways including size-selective precipitation5 (resulting in less than 5% size variations), surface modification by exchange of the passivation layer,6,7 formation of layered core-shell heterostructures,8,9 immobilization in sol-gel10 and polymer11 matrices, and self-assembly into 3D superlattices.12,13


Transient Absorption Amplify Spontaneous Emission Hole State Auger Recombination Optical Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Efros and A. Efros, Soy. Phys. Sem., 16, 772 (1982).Google Scholar
  2. 2.
    L. Brus, J. Chem. Phys., 80, 4473 (1984).CrossRefGoogle Scholar
  3. 3.
    A. Ekimov, J. Lumin., 70, 1 (1996).CrossRefGoogle Scholar
  4. 4.
    N. Borrelli, D. Hall, H. Holland, and D. Smith, J. Appl. Phys., 61, 5399 (1987).CrossRefGoogle Scholar
  5. 5.
    C. Murray, D. Norris, and M. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).CrossRefGoogle Scholar
  6. 6.
    S. Majetich and A. Carter, J. Phys. Chem., 97, 8727 (1993).CrossRefGoogle Scholar
  7. 7.
    M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Miulec, and M. G. Bawendi, J. Phys. Chem., 106, 9869 (1997).CrossRefGoogle Scholar
  8. 8.
    A. Kortan, R. Hull, R. Opila, M. Bawendi, M. Steigerwald, P. Carroll, and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).CrossRefGoogle Scholar
  9. 9.
    M. Hines and P. Guyot-Sionnest, J. Phys. Chem., 100, 468 (1996).CrossRefGoogle Scholar
  10. 10.
    V. C. Sundar, H.-J. Eisler, and M. G. Bawendi, Adv. Mater. 14, 739 (2002).CrossRefGoogle Scholar
  11. 11.
    N. Greenham, X. Peng, and A. Alivisatos, Phys. Rev. B, 54, 17628 (1996).CrossRefGoogle Scholar
  12. 12.
    C. Murray, C. Kagan, and M. Bawendi, Science, 270, 1335 (1995).CrossRefGoogle Scholar
  13. 13.
    O. Micic, K. Jones, A. Cahill, and A. Nozik, J. Phys. Chem. B, 102, 9791 (1998).CrossRefGoogle Scholar
  14. 14.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, and P. Alivisatos, Science, 281, 2013 (1998).CrossRefGoogle Scholar
  15. 15.
    W. C. W. Chan and S. Nie, Science, 281, 2016 (1998).CrossRefGoogle Scholar
  16. 16.
    Y. Vandyshev, V. Dneprovskii, V. Klimov, and D. Okorokov, JETP Lett., 54, 442 (1991).Google Scholar
  17. 17.
    V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, Science, 290, 314 (2000).CrossRefGoogle Scholar
  18. 18.
    A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995).CrossRefGoogle Scholar
  19. 19.
    V. Colvin, M. Schlamp, and A. Alivisatos, Nature, 370, 354 (1994).CrossRefGoogle Scholar
  20. 20.
    B. O. Dabbousi, M. Bawendi, O. Onitsuka, and M. F. Rubner, Appl. Phys. Lett., 66, 1316 (1995).CrossRefGoogle Scholar
  21. 21.
    B. Kraabel, A. Malko, J. A. Hollingsworth, and V. I. Klimov, Appl. Phys. Lett., 78, 1814 (2001).CrossRefGoogle Scholar
  22. 22.
    S. Logunov, T. C. Green, S. Marquet, and M. A. El-Sayed, J. Phys. Chem. A, 102, 5658 (1998).CrossRefGoogle Scholar
  23. 23.
    P. Guyot-Sionnest, M. Shim, C. Matranga, and M. Hines, Phys. Rev. B, 60, 2181 (1999).CrossRefGoogle Scholar
  24. 24.
    D. Norris and M. Bawendi, Phys. Rev. B, 53, 16338 (1996).CrossRefGoogle Scholar
  25. 25.
    A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T.V. Yazeva, A. V. Rodina, and A. L. Efros, J. Opt. Soc. Am. B, 10, 100 (1993).CrossRefGoogle Scholar
  26. 26.
    J.-B. Xia, Phys. Rev. B, 40, 8500 (1989).Google Scholar
  27. 27.
    A. L. Efros, Phys. Rev. B, 46, 7448 (1992).Google Scholar
  28. 28.
    L. Efros and A. Rodina, Phys. Rev. B, 47, 10005 (1993).CrossRefGoogle Scholar
  29. 29.
    T. Takagahara, Phys Rev. B, 47, 4569 (1993).Google Scholar
  30. 30.
    M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, Phys Rev. Lett., 75, 3728 (1995).CrossRefGoogle Scholar
  31. 31.
    V. Klimov, in Handbook on Nanostructured Materials and Nanotechnology, edited by H. Nalwa ( Academic Press, San Diego, 1999 ).Google Scholar
  32. 32.
    S. Hunsche, T. Dekorsy, V. Klimov, and H. Kurz, Appl. Phys. B, 62, 3 (1996).CrossRefGoogle Scholar
  33. 33.
    V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Phys. Rev. B, 60, 13740 (2000).CrossRefGoogle Scholar
  34. 34.
    V. Klimov, S. Hunsche, and H. Kurz, Phys. Rev. B, 50, 8110 (1994).CrossRefGoogle Scholar
  35. 35.
    D. Norris, A. Sacra, C. Murray, and M. Bawendi, Phys. Rev. Lett., 72, 2612 (1994).CrossRefGoogle Scholar
  36. 36.
    Y. Hu, S. Koch, M. Linberg, N. Peyghambarian, E. Pollock, and F. Abraham, Phys. Rev. Lett., 64, 1805 (1990).CrossRefGoogle Scholar
  37. 37.
    K. Kang, A. Kepner, S. Gaponenko, S. Koch, Y. Hu, and N. Peyghambarian, Phys. Rev. B, 48, 15449 (1993).CrossRefGoogle Scholar
  38. 38.
    K. H. Pantke, J. Erland, and J. M. Hvam, J. Crystal Growth, 117, 763 (1992).CrossRefGoogle Scholar
  39. 39.
    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures ( Springer, Berlin, 1999 ).Google Scholar
  40. 40.
    T. Elsaesser and M.Woerner, Phys. Rep., 321, 253 (1999).CrossRefGoogle Scholar
  41. 41.
    V. I. Klimov, J. Phys. Chem. B, 104, 6112 (2000).CrossRefGoogle Scholar
  42. 42.
    U. Woggon, H. Giessen, F. Gindele, O. Wind, B. Fluegel, and N. Peyghambarian, Phys. Rev. B, 54, 17681 (1996).CrossRefGoogle Scholar
  43. 43.
    V. I. Klimov and D. W. McBranch, Phys. Rev. Lett., 80, 4028 (1998).CrossRefGoogle Scholar
  44. 44.
    V. I. Klimov and D. W. McBranch, Opt. Lett., 23, 277 (1998).CrossRefGoogle Scholar
  45. 45.
    R. Fork, C. V. Shank, C. Hirlimann, and R. Yen, Opt. Lett., 8, 1 (1983).CrossRefGoogle Scholar
  46. 46.
    V. I. Klimov, C. J. Schwarz, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Phys. Rev. B, 60, 2177 (1999).CrossRefGoogle Scholar
  47. 47.
    V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Science, 287, 1011 (2000).CrossRefGoogle Scholar
  48. 48.
    E. Conwell, High Field Transport in Semiconductors ( Academic Press, New York, 1967 ).Google Scholar
  49. 49.
    S. Prabhu, A. Vengurlekar, and J. Shah, Phys. Rev. B, 51, 14233 (1995).CrossRefGoogle Scholar
  50. 50.
    V. Klimov, P. H. Bolivar, and H. Kurz, Phys. Rev. B, 52, 4728 (1995).CrossRefGoogle Scholar
  51. 51.
    H. Benisty, C. Sotomayor-Torres, and C. Weisbuch, Phys. Rev. B, 44, 10945 (1991).CrossRefGoogle Scholar
  52. 52.
    U. Bockelmann and G. Bastard, Phys. Rev. B, 42, 8947 (1990).CrossRefGoogle Scholar
  53. 53.
    K. Shum, W. B. Wang, R. Alfano, and K. Jones, Phys. Rev. Lett., 68, 3904 (1992).CrossRefGoogle Scholar
  54. 54.
    T. Inoshita and H. Sakaki, Phys. Rev. B, 46, 7260 (1992).CrossRefGoogle Scholar
  55. 55.
    P. Sercel, Phys. Rev. B, 51, 14532 (1995).Google Scholar
  56. 56.
    U. Bockelmann and T. Egler, Phys. Rev. B, 46, 15574 (1992).CrossRefGoogle Scholar
  57. 57.
    A. L. Efros, V. A. Kharchenko, and M. Rosen, Solid State Commun., 93, 281 (1995).CrossRefGoogle Scholar
  58. 58.
    V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Phys. Rev. B, 61 13349 (2000).Google Scholar
  59. 59.
    S. Schnitt-Rink, D. Miller, and D. Chemla, Phys. Rev. B, 35, 8113 (1987).CrossRefGoogle Scholar
  60. 60.
    A. L. Efros, A. Ekimov, F. Kozlovski, V. Petrova-Koch, H. Schmidbaur, and S. Shumilov, Solid State Commun., 78, 853 (1991).CrossRefGoogle Scholar
  61. 61.
    T. Takagahara, Phys. Rev. Lett., 71, 3577 (1993).CrossRefGoogle Scholar
  62. 62.
    T. Takagahara, J. Luminescence, 70, 129 (1996).Google Scholar
  63. 63.
    S. Xu, A. Mikhailovsky, J. A. Hollingsworth, and V. I. Klimov, Phys. Rev. B 65, 53191 (2002).Google Scholar
  64. 64.
    J. Shah, IEEE J. Quantum Electron., 24, 276 (1988).CrossRefGoogle Scholar
  65. 65.
    A. V. Uskov, Phys. Rev. Lett., 85, 1516 (2000).CrossRefGoogle Scholar
  66. 66.
    M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron., 22, 1915 (1986).CrossRefGoogle Scholar
  67. 67.
    N. N. Ledentsov, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maksimov, I. G. Tabatadze, and P. S. Kopev, Semiconductors, 28, 832 (1994).Google Scholar
  68. 68.
    N. Kistaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, and U. Richter, Electron. Lett., 30, 1416 (1994).Google Scholar
  69. 69.
    J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, Appl. Phys. Lett., 67, 2672 (1995).CrossRefGoogle Scholar
  70. 70.
    F. Gindele, R. Westphaeling, U. Woggon, L. Spanhel, and V. Ptatschek, Appl. Phys. Lett., 71, 2181 (1997).CrossRefGoogle Scholar
  71. 71.
    A. V. Malko, J. A. Hollingsworth, A. A. Mikhailovsky, and V. I. Klimov, unpublished.Google Scholar
  72. 72.
    D. Chatterji, The Theory of Auger Transitions ( Academic Press, London, 1976 ).Google Scholar
  73. 73.
    P. Landsberg, Recombination in Semiconductors ( University Press, Cambridge, 1991 ).Google Scholar
  74. 74.
    D. Chepic, A. L. Efros, A. Ekimov, M. Ivanov, V. A. Kharchenko, and I. Kudriavtsev, J. Luminescence, 47, 113 (1990).CrossRefGoogle Scholar
  75. 75.
    V. A. Kharchenko and M. Rosen, J. Luminescence, 70, 158 (1996).CrossRefGoogle Scholar
  76. 76.
    A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, Appl. Phys. Lett. 81, 1303 (2002).CrossRefGoogle Scholar
  77. 77.
    S. L. McCall, A. F. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Victor I. Klimov
    • 1
  1. 1.Chemistry Division, C-PCS, MS-J567Los Alamos National LaboratoryUSA

Personalised recommendations