Auger Processes in Nanosize Semiconductor Crystals

  • Alexander Efros
Part of the Nanostructure Science and Technology book series (NST)


In this chapter I discuss the role that various types of Auger processes play in the linear and nonlinear optical properties of semiconductor nanocrystals (NCs). The nanocrystal form of semiconductors was discovered by Ekimov [1], Hengeline [2], and Brus [3] independently in semiconductor doped glasses and colloidal solutions almost 20 years ago. However, rapid progress in semiconductor nanocrystal research, both in chemical synthesis and in physical understanding has been made only in the last ten years. A wide class of semiconductor materials can now be prepared in nanocrystal form including: covalent Si and Ge, III-V compounds (GaAs, GaP, InP), II-VI compounds (CdSe, CdS, ZnSe, CdTe, PbS and their alloys), and I-VII compounds (CuCl, CuBr, AgBr) (see for review Ref.[4]). Furthermore, in many cases, technology allows one to control the size (from 2 to 30 nm), shapes and surface of these nano-size semiconductor crystals (for an example, see the excellent reviews by Brus [5] and Alivisatos [6]). Realistic calculations of the nanocrystal properties allow us to make a serious analysis of experimental data (for example, see Ref.7). This together with progress in chemical synthesis has brought us to the stage of making different applications of NCs.


Auger Process Random Telegraph Signal Phonon Bottleneck Auger Ionization Semiconductor Dope Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I Ekimov, A. A. Onushcenko, and V. A. Tzekhomskii, Soy. Phys. Chem. Glass 6, 511 (1980).Google Scholar
  2. 2.
    A. Henglein, Ber Bunsenges, Phys. Chem. 88, 301 (1982).Google Scholar
  3. 3.
    L. E. Brus, J. Chem. Phys. 79, 5566 (1983).CrossRefGoogle Scholar
  4. 4.
    Spectroscopy of Isolated and Assembled Semiconductor Nanocrystals,Eds. L.E. Brus, A. L. Efros and T. Itoh, Special Issue of J. of Luminescence 69, North-Holland (1996).Google Scholar
  5. 5.
    L. E. Brus. Appl. Phys. A 53, 465 (1991).CrossRefGoogle Scholar
  6. 6.
    A. P. Alivisatos, Science 271, 933 (1996).CrossRefGoogle Scholar
  7. 7.
    Al. L. Efros and M. Rosen, Ann. Rev. Mater. Sci. 30, 475 (2000).CrossRefGoogle Scholar
  8. 8.
    V. I. Klimov, A. A. Mikhailovsky, Su. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).CrossRefGoogle Scholar
  9. 9.
    M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and P. Alivisatos, Science 281, 2013 (1998).CrossRefGoogle Scholar
  10. 10.
    M. Nirmal, B. O. Dubbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus. Nature, 383, 802 (1996).CrossRefGoogle Scholar
  11. 11.
    U. Banin, M. Bruchez, A.P. Alivisatos, T. Ha, S. Weiss, D. S. Chemla, J. Chem. Phys. 110, 1195 (1999);CrossRefGoogle Scholar
  12. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, J. Chem. Phys. 112, 3117 (2000);CrossRefGoogle Scholar
  13. R. G. Neuhauser, K. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, Phys. Rev. Lett. 85, 3301 (2000).CrossRefGoogle Scholar
  14. 12.
    J. Tittel, W. Gohde, F. Koberling, A. Mews, A. Kornowski, H. Weller, A. Eychmuller, Th. Basche, and Ber Bunsenges, Phys. Chem. 101, 1626 (1997);Google Scholar
  15. F. Koberling, A. Mews, Th. Basche, Phys. Rev. B 60, 1921 (1999).CrossRefGoogle Scholar
  16. 13.
    K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. J. Woo, and M. G. Bawendi, Phys. Rev. B 63, 5316 (2001);Google Scholar
  17. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, J. Chem. Phys. 115, 1028 (2001).CrossRefGoogle Scholar
  18. 14.
    M. Kuno, D. P. Fromm, A. Gallagher, D. J. Nesbitt, O. I. Micic, and A. J. Nozik, Nano Lett. 1, 557 (2001).CrossRefGoogle Scholar
  19. 15.
    M. D. Mason, G. M. Credo, K. D. Weston, and S. K. Buratto, Phys. Rev. Lett. 80, 5405 (1998).CrossRefGoogle Scholar
  20. 16.
    D. I. Chepic, Al. L. Efros, A. I. Ekimov, M. G. Ivanov, I. A. Kudriavtsev, V. A. Kharchenco, and T. V. Yazeva, J. of Luminescece. 47, 113 (1990).CrossRefGoogle Scholar
  21. 17.
    P. Roussignol, D. Ricard, K.C. Rustagi, and C. Flytzanis, Optics Commun. 55, 143 (1985).CrossRefGoogle Scholar
  22. 18.
    A. I. Ekimov, I. A Kudriavtsev, M. G. Ivanov, and Al. L. Efros, J. of Luminescence 46, 83 (1990).CrossRefGoogle Scholar
  23. 19.
    V. J. Grabovskis, J. J. Dzenis, A. I. Ekimov, I. A. Kudriavtsev, and M. N. Tolstoii, Soy. Phys. Solid State 31, 150 (1989).Google Scholar
  24. 20.
    A. I. Ekimov, and A. L. Efros, Phys. Stat. Sol. (b) 150, 627 (1988)CrossRefGoogle Scholar
  25. 21.
    J. H. MacKey, H. L. Smith, and A. I. Halperin, J. Phys. Chem. Solids 27, 1759 (1966).CrossRefGoogle Scholar
  26. 22.
    Al. L. Efros, M. Rosen, B. Averbuoukh, D. Kovalev, M. Ben-Chocim, and F. Koch, Phys. Rev. B 56, 3875 (1997).CrossRefGoogle Scholar
  27. 23.
    A. B. Migdal, The qualitative methods of quantum theory,Nauka, Moskva (1975)Google Scholar
  28. 24.
    Al. L. Efros and A. L. Efros, Soy. Phys.-Semicond. 16, 772 (1982).Google Scholar
  29. 25.
    Al. L. Efros, Phys. Rev. B 46, 7448 (1992).Google Scholar
  30. 26.
    M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, Al. L. Efros, and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995); Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).Google Scholar
  31. 27.
    K. Naoe, L. G. Zimin, and Y. Masumoto, Phys. Rev. B 50, 18200 (1994).CrossRefGoogle Scholar
  32. 28.
    D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, Phys. Rev. Lett. 72, 2612 (1994).CrossRefGoogle Scholar
  33. 29.
    Al. L Efros and M. Rosen, Phys. Rev. Lett. 78, 1110 (1997).CrossRefGoogle Scholar
  34. 30.
    V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale and M. G. Bawendi, Science 287, 1011 (2000).CrossRefGoogle Scholar
  35. 31.
    D. Kovalev, B. Averboukh, M. Ben-Chorin, F. Koch, Al. L Efros, and M. Rosen, Phys. Rev. Lett. 77, 2089 (1996).CrossRefGoogle Scholar
  36. 32.
    H. Benisty, C. M. Sotomayor Torres, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).CrossRefGoogle Scholar
  37. 33.
    Al. L. Efros, V. A. Kharchenko, and M. Rosen, Solid State Commun. 93, 281 (1995).CrossRefGoogle Scholar
  38. 34.
    Al. L. Efros, in: Phonons in Semiconductor Nanostructures, ed. J-P.Leburton, J. Pascual, C. Sotomayor Tores, KAP. Boston, London (NATO ASI-v.236), p. 299, 1993.Google Scholar
  39. 35.
    P. Guyot-Sionnest, M. Shim, C. Matranga, and M. Hiens, Phys. Rev. B 60, 2181 (1999).CrossRefGoogle Scholar
  40. 36.
    V. I. Klimpov, A. A. Mikailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Phys. Rev. B 61, R13349 (2000).CrossRefGoogle Scholar
  41. 37.
    A. V. Rodina, A. Yu Alekseev, Al. L. Efros, M. Rosen, and B. K. Meyer, Phys. Rev. B 65, 125302 (2002).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Alexander Efros
    • 1
  1. 1.Nanostructure Optics SectionNaval Research LaboratoryUSA

Personalised recommendations