Photonic Applications of Semiconductor-Doped Glasses

  • N. F. Borrelli
Part of the Nanostructure Science and Technology book series (NST)


The technical capability to produce structures in solids that are small and precise enough in dimension to be comparable to the Bohr radius of an electron is a relatively recent technological development. This effort began with the invention of a deposition technique called MBE (molecular beam epitaxy). From this technique came the first layered structures in GaAs where the layer thickness could be controlled to a dimension less than the Bohr radius, ħ 2 К / m e,h e 2 , where, К is the dielectric constant of the material, and me, h is the mass of the electron or hole. These precisely controlled layered structures gave birth to the “quantum well” devices that have played such an important role in the opto-electronics industry. The key property of the structure is the dependence of the energy levels on the dimension of the layers.. The term that applies to the effect where the physical size of the structure is smaller that the normal electron orbit is called “quantum confinement.”


Saturable Absorber Refractive Index Change Pump Intensity Bohr Radius Saturation Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al. L. Efros, and A. L. Efros, Soy. Phys. Semicond 16 (7), 772–775 (1982).Google Scholar
  2. 2.
    L. E. Brus, J. Phs. Chem, 90, 2555, (1986).Google Scholar
  3. 3.
    H. Weller, H. Koch, U. Guterrez, and M. Henglein, Phys. Chem 88, 549, (1984).Google Scholar
  4. 4.
    Glass Color Filters“ CF-3 Coming Glass Works page 10, sharp cut filters, 1965.Google Scholar
  5. 5.
    R. J,. Araujo, and N. F. Borrelli, Photochromic glasses in “Optical Prop. of Glass,”, eds. D. R. Uhlmann, and N. J. Kreidl, Am Cer Soc., 1991.Google Scholar
  6. 6.
    H. S. Zhou, I. Honma, J. W. Haus, H. Sasabe, and H. Komiyama, J. Lum, 70(1–6), 21–34, (1996) and references contained.Google Scholar
  7. 7.
    D. J. Norris, Al. L. Efros, M. Rosen, and M. G. Bawendi, Phys. Rev. B, 53(24), 16 347–16 354 (1996).Google Scholar
  8. 8.
    M. L. Stiegerwald, A. P. Alivsatos, J. M. Gibson, T. D. Harris, P. Kortan, A. J. Muller, A.M. Thayer, T. M. Duncan, D.0 Douglass, and L. E. Brus, J. Am Chem Soc, 110, 3046, (1988).CrossRefGoogle Scholar
  9. 9.
    Y. Wang, A. Suna, W. Mahler, and R. Kasowski, J. Chem Phys 87, 7315, (1987).CrossRefGoogle Scholar
  10. 10.
    B. G. Potter, and J. H. Simmons, Phys. Rev. 37(18), 10 838, (1988).Google Scholar
  11. 11.
    A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, A. I, Kudyravtsev, T. V. Yazeva, A. V. Rodina, and Al. L. Efros, JOSA-B, 10, 100, (1993).CrossRefGoogle Scholar
  12. 12.
    L. E. Brus, J. Chem. Phys, 80, 4403 (1984).CrossRefGoogle Scholar
  13. 13.
    A. I. Ekimov, Al. L Efros, and A. A. Onushchenko, Sol. State Comm, 56, 921, (1985).CrossRefGoogle Scholar
  14. 14.
    C. Murray, D. Norris, and M. Bawendi, J. Am Chem. Soc 115, 8706, (1993).CrossRefGoogle Scholar
  15. 15.
    F. W. Wise, Accounts of Chem Res. 33 (11), 773, (2000).CrossRefGoogle Scholar
  16. 16.
    P. Roussignol, D. Ricard, J. Lukisak, C. Flytzanis, JOSA-B 4, 5 (1987).CrossRefGoogle Scholar
  17. 17.
    I. M. Lifshitz, and V. V. Slyozov, JETP, 35, 331, (1959).Google Scholar
  18. 18.
    S. Schmitt-Rink, D. Miller, and D. Chemla, Phys. Rev. B, 35, 8113, (1987).Google Scholar
  19. 19.
    V. I. Klimov, “H ‘book on Nanostructured Materials and Nanotechnology, ed H. Nalwa, Academic Press 1998.Google Scholar
  20. 20.
    P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, Appl. Phys. Lett., 71 (12) 53, (1997).CrossRefGoogle Scholar
  21. 21.
    V. I Klimov, Phys. Chem B 104 6112, (2000).Google Scholar
  22. 22.
    F. Hennenberger, J. Pulis, Ch. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimov, Semicond. Sc. Tech 8, A41 - A50, (1991).CrossRefGoogle Scholar
  23. 23.
    S. Park, R. Morgan, Y. Hu, M. Linberg, S. W. Koch, and N. Peyghambarian, JOSA B 7, 2097, (1990).CrossRefGoogle Scholar
  24. 24.
    D. W. Hall, and N. F. Borrelli, JOSA-B, 5, 1650 (1988).CrossRefGoogle Scholar
  25. 25.
    N. Peyghambarian, B. Fluegel, D. Hulin, A. Migus, M. Joffre, A. Antonetti, S. Kock, and M. Lindberg, IEEE JQE 25 (12), 2516, (1989).CrossRefGoogle Scholar
  26. 26.
    F de Rougemont, R. Frey, P. Roussignol, D. Ricard, and C. Flytzanis, Appl. Phys Lett 50 (23), 1619, (1987).CrossRefGoogle Scholar
  27. 27.
    N. F. Borrelli, and D. W. Smith, J. Non-Cryst. Sol 180, 25, (1994).CrossRefGoogle Scholar
  28. 28.
    K. Wundke, S. Potting, J. Auxier, A. Schulzgen, N. Peyghambaian, and N. F. Borrelli, Appl. Phys. Lett 76 (1), 10, (2000).CrossRefGoogle Scholar
  29. 29.
    G. Tamulaitis, V. Gulbinas, G. Kodis, A. Dementjev, and L. Valkunas, J. Appl. Phys 88 (1), 178 (2000).CrossRefGoogle Scholar
  30. 30.
    B. L. Justus, M. E. Seaver, J.A. Ruiler, and A.J. Campillo, Appl. Phys. Lett 57 (14), 1381, (1990).CrossRefGoogle Scholar
  31. 31.
    B. L. Justus, and J. A. Ruiler, Opt Mat. 2, 33, (1993).CrossRefGoogle Scholar
  32. 32.
    K. J. Blow, and D. Wood, JOSA 5(3), 629, (1988).Google Scholar
  33. 33.
    U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Mansuchek, and J Aus de Au, IEEE Selected Topics in QE, 2 (3) 435, (1996).Google Scholar
  34. 34.
    A. M. Malyarevich, V. G. Savitski, P. V. Prokoshin, N. N. Posnov, and K. V. Yumashev. TBP.Google Scholar
  35. 35.
    J. E. Phil\ipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, Appl. Phys. B, 72, 175, (2001).Google Scholar
  36. 36.
    V. I. Klimov, A. A. Mihailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, SCIENCE, 290, 314, (2000).CrossRefGoogle Scholar
  37. 37.
    Y. Masumoto, and T. Kawamura, Appl. Phys. Lett 62 (3), 225, (1993).CrossRefGoogle Scholar
  38. 38.
    V. S. Dneprovskii, V. I. Klimov, D. K. Okorokov, and. Y. V. Vandyshev, Sol. State Comm 81 (3), 227, (1992).CrossRefGoogle Scholar
  39. 39.
    H. Giessen, U. Woggon, B. Fluegel, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, Opt. Lett,21(14) 1043, (1996).Google Scholar
  40. 40.
    U. Woggon, O. Wind, F. Gindele, E. Tsitishvili, and M. Muller, J. Lumin 70, 269, (1996).CrossRefGoogle Scholar
  41. 41.
    J. Butty, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, Appl. Phys. Lett, 69 (21), 3224, (1996).CrossRefGoogle Scholar
  42. 42.
    Y. Z. Hu, S. W. Koch, and N. Peyghambarian, J. Lumin 70, 186, (1996).CrossRefGoogle Scholar
  43. 43.
    K. Wundke, J. Auxier, A. Schultzgen, and N. Peyghambarian, Appl. Phys. Lett 71 (20), 3060, (1999).CrossRefGoogle Scholar
  44. 44.
    J. Auxier, K. Wundke, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, Proc. CLEO ‘00 OSA Technical Digest Series 385 (2000).Google Scholar
  45. 45.
    D. Mayweather, M. G. F. Digonnet, and R. H. Pantell, J. Lightwave Tech., 14 (14), 60, (1996).Google Scholar
  46. 46.
    P. Horan, and W Blau, Semicond. Sci Techn 2, 382, (1987).CrossRefGoogle Scholar
  47. 47.
    R. H. Pantell and M. J. F. Digonnet, J. Lightwave, Tech 12 (1), 149, (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • N. F. Borrelli
    • 1
  1. 1.Science and Technology DivisionCorning IncorporatedUSA

Personalised recommendations