Skip to main content

Stability and New Non-Abelian Zeta Functions

  • Chapter
Number Theoretic Methods

Part of the book series: Developments in Mathematics ((DEVM,volume 8))

  • 583 Accesses

Abstract

In this paper, we first use classification of uni-modular lattices as a motivation to introduce semi-stable lattices. Then, as an integration over moduli spaces of semi-stable lattices, using a new arithmetic cohomology, we define a new type of non-abelian zeta functions for num­ber fields. This is a natural generalization of what Iwasawa and Tate did for Dedekind functions. Basic facts for these zeta functions such as functional equations, singularities and residues at simple poles are discussed. Finally we introduce and study new non-abelian zeta func­tions for curves over finite fields, as a natural generalization of Artin’s (abelian) zeta functions, using moduli spaces of semi-stable bundles. Some interesting examples are also given here.

Graduate School of Mathematics, Nagoya University, Japan

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.N. Andrianov, Euler products that correspond to Siegel’s modular forms of genus 2, Russian Math. Surveys 29: 3 (1974), 45–116.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen, I,II, Math. Zeit, 19 153–246 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.H. Conway N.J.A. Sloane, Sphere packings, lattices and groups, Springer-Verlag, 1993.

    Google Scholar 

  4. Ch. Deninger, Motivic L-functions and regularized determinants, Proc. Sympos. Pure Math, 55 (1), AMS, (1994), 707–743.

    Google Scholar 

  5. U.V. Desale S. Ramanan, Poincaré polynomials of the variety of stable bundles, Math. Ann 216, 233–244 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. van der Geer R. Schoof, Effectivity of Arakelov Divisors and the Theta Divisor of a Number Field, math.AG/9802121

    Google Scholar 

  7. D.R. Grayson, Reduction theory using semistability. Comment. Math. Helv. 59 (1984), no. 4, 600–634.

    Article  MathSciNet  Google Scholar 

  8. D.R. Grayson, Reduction theory using semistability. II, Comment. Math. Helv. 61 (1986), no. 4, 661–676.

    Article  MathSciNet  Google Scholar 

  9. G. Harder M.S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles over curves, Math Ann. 212 (1975), 215–248.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Hasse, Mathematische Abhandlungen, Walter de Gruyter, 1975.

    Google Scholar 

  11. K. Iwasawa, Letter to Dieudonné, April 8, 1952, in Advanced Studies in Pure Math. 21 (1992), 445–450.

    MathSciNet  Google Scholar 

  12. W. Kohnen, this proceeding.

    Google Scholar 

  13. S. Lang, Algebraic Number Theory, Springer-Verlag, 1986.

    Google Scholar 

  14. S. Lang, Fundamentals on Diophantine Geometry, Springer-Verlag, 1983.

    Google Scholar 

  15. A. Moriwaki, Stable sheaves on arithmetic curves, personal note dated in 1992.

    Google Scholar 

  16. D. Mumford, Geometric Invariant Theory, Springer-Verlag, 1965.

    Google Scholar 

  17. J. Neukirch, Algebraic Number Theory, Springer-Verlag, 1999.

    Google Scholar 

  18. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Asterisque 96, 1982.

    Google Scholar 

  19. U. Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischer Formen, Arch. Math. (Basel) 27 (1976), no. 6, 604–610.

    Article  MathSciNet  MATH  Google Scholar 

  20. U. Stuhler, Zur Reduktionstheorie der positiven quadratischen Formen. II, Arch. Math. (Basel) 28 (1977), no. 6, 611–619.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Tate, Fourier analysis in number fields and Hecke’s zeta functions, Thesis, Princeton University, 1950

    Google Scholar 

  22. A. Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Herman, 1948

    Google Scholar 

  23. L. Weng, Riemann-Roch theorem, stability and new zeta functions for number fields, math. AG/0007146

    Google Scholar 

  24. L. Weng, Constructions of new non-abelian zeta functions for curves, math. AG/0102064

    Google Scholar 

  25. L. Weng, Refined Brill-Noether locus and non-abelian zeta functions for elliptic curves, math.AG/0101183

    Google Scholar 

  26. L. Weng, A Program for Geometric Arithmetic, math. AG/0111241

    Google Scholar 

  27. L. Weng, A note on arithmetic cohomologies for number fields, math.AG/0112164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weng, L. (2002). Stability and New Non-Abelian Zeta Functions. In: Kanemitsu, S., Jia, C. (eds) Number Theoretic Methods. Developments in Mathematics, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3675-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3675-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5239-4

  • Online ISBN: 978-1-4757-3675-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics