Skip to main content

A Penultimate Step toward Cubic Theta-Weyl Sums

  • Chapter
Number Theoretic Methods

Part of the book series: Developments in Mathematics ((DEVM,volume 8))

Abstract

The attempt at interpreting the Weyl sums as finite theta series (theta-Weyl sums) has been successful only in the case of quadratic polynomials. In this paper we shall present basic ingredients for interpreting cubic Weyl sums as finite theta series, i.e. the cubic continued fraction expansion, the van der Corput reciprocal function, cubic reciprocal and parabolic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fiedler, W. Jurkat and O. Körner, Asymptotic expansions of finite theta series, Acta Arith. 32 (1977), 129–146

    MathSciNet  MATH  Google Scholar 

  2. S. W. Graham and G. Kolesnik, Van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series 126, Cambridge Univ. Press, London, 1991

    Google Scholar 

  3. J.-I. Igusa, Lectures on forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics 59, Tata Inst., Bombay, 1978

    Google Scholar 

  4. T. Kubota, On an analogy to the Poisson summation formula for generalised Fourier transformation, J. Reine angew. Math. 268/269 (1974), 180–189

    Google Scholar 

  5. Y. Kuribayashi, On pseudo-Fourier transform (in Japanese), Sûrikaiseki- kenkyusho Kôkyûroku 1039 (1998), 152–164

    Google Scholar 

  6. W. Maier, Transformation der kubischen Thetafunktionen, Math. Ann. 111 (1935), 183–196

    Article  MathSciNet  Google Scholar 

  7. Y.-N. Nakai, On a 9-Weyl sum, Nagoya Math. J., 52 (1973), 163–172.

    MathSciNet  MATH  Google Scholar 

  8. Y.-N. Nakai, On a 9-Weyl sum, Errata, the same J., 60 (1976), 217.

    MathSciNet  MATH  Google Scholar 

  9. Y.-N. Nakai, Weyl sums and the van der Corput method (in Japanese), Sûrikaisekikenkyusho Kôkyûroku 456 (1982), 2–18

    Google Scholar 

  10. Y.-N. Nakai, On Diophantine inequalities of real indefinite quadratic forms of additive type in four variables, Advanced Studies in Pure Mathematics 13 (1988), Investigations in Number Theory, 25–170

    Google Scholar 

  11. Y.-N. Nakai, Cubic continued fraction expansions I and II (in Japanese), Mem. Fac. Edu. Yamanashi Univ. 41–2 (1990), 4–6 (Cubic I)

    Google Scholar 

  12. Y.-N. Nakai, Cubic continued fraction expansions I and II (in Japanese), ibid. 44–2 (1993), 1–3 (Cubic II)

    Google Scholar 

  13. Y.-N. Nakai, A strengthening of the conjecture that the functions invariant under Fourier transformation are quadratic polynomials, (in Japanese), Mem. Fac. Edu. Yamanashi Univ. 43–2 (1992), 1–3

    Google Scholar 

  14. Y.-N. Nakai, A candidate for cubic theta-Weyl sums (I) (in Japanese), Mem. Fac. Edu. Yamanashi Univ. 49–2 (1998), 1–4

    MathSciNet  Google Scholar 

  15. Y.-N. Nakai, A candidate for cubic theta-Weyl sums (in Japanese), Sûrikaisekikenkyusho Kôkyûroku 1091 (1999), 298–307

    MathSciNet  MATH  Google Scholar 

  16. W. Raab, Kubische und biquadratische Thetafunktionen I und II, Sizungsber. Osterreich. Akad. Wiss. Mat-Natur. KI. 188 (1979), 47–77 and 231–246

    Google Scholar 

  17. T. Suzuki, Weil type representations and automorphic forms, Nagoya Math. J., 77 (1980), 145–166

    MathSciNet  MATH  Google Scholar 

  18. E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford Univ. Press, 1951; second ed., rev. by D.R. Heath-Brown, 1996

    Google Scholar 

  19. R. C. Vaughan, Some remarks on Weyl sums, Colloq. Math. Soc. Janos Bolyai, 34 (II), Topics in Classical Number Theory, Budapest (1987), 1585–1602

    Google Scholar 

  20. R. C. Vaughan, The Hardy-Littlewood method, second edition, Cambridge Tracts in Mathematics 125, Cambridge University Press, London 1997.

    Google Scholar 

  21. A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nakai, Y. (2002). A Penultimate Step toward Cubic Theta-Weyl Sums. In: Kanemitsu, S., Jia, C. (eds) Number Theoretic Methods. Developments in Mathematics, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3675-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3675-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5239-4

  • Online ISBN: 978-1-4757-3675-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics