Advertisement

Mesoscopic Physics

  • B. D. Simons
  • A. Altland
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

The following is a course of lectures on the manifestations of quantum phase coherence phenomena and interaction in mesoscopic structures. In discussing applications to a variety of modern topics in condensed matter physics emphasis is given to methods of statistical field theory.

Keywords

Random Matrix Theory Symmetry Class Weak Localization Random Matrix Ensemble Mesoscopic Physics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.W. Ashcroft and N.D. Mermin, Solid State Physics ( Saunders College, Philadelphia, 1976 ).Google Scholar
  2. 2.
    P.W. Anderson, Basic Notions of Condensed Matter Physics (Benjamin, Menlo Park, CA, 1984):Google Scholar
  3. 3.
    L.D. Landau and I.M. Lifshitz, Physical Kinetics (Pergamon Press, 1982 ).Google Scholar
  4. 4.
    For a review see L.P. Kouwenhoven et al., Electron transport in quantum dots,in “Mesoscopic Electron Transport,” eds. L.L. Sohn, L.P. Kouwenhoven, and G. Schön (Kluwer, Dordrecht, 1997); C.M. Marcus et al., Chaos, Solitons and Fractals 8, 1261 (1997), condmat/9703038.Google Scholar
  5. 5.
    M.J. Kelly, Low-Dimensional Semiconductors ( Clarendon Press, Oxford, 1995 ).Google Scholar
  6. 6.
    C.W.J. Beenakker and H. van Houten, Quantum transport in semiconducting nanostructures, Solid State Physics, vol. 44 (Academic Press, New York, 1991 ), p. 1.Google Scholar
  7. 7.
    D.K. Ferry and S.M. Goodnick, Transport in Nanostructures, Cam-bridge Studies in Semi-Conductor Physics and Microelectronic Engineering, vol. 6 ( Cambridge Univ. Press, 1997 ).Google Scholar
  8. 8.
    D. Madly and. M. Sanquer, Sensitivity of quantum conductance fluctuations and of 1/ f noise to time reversal symmetry, J. Phys. France 2, 357–364 (1992).Google Scholar
  9. 9.
    P.A. Lee and A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    B.L. Altshuler, JETP Lett. 41, 649 (1985).ADSGoogle Scholar
  11. 11.
    F.J. Dyson, J. Math. Phys. 3, 140, 157, 166 (1962);MathSciNetCrossRefGoogle Scholar
  12. F.J. Dyson and M.L. Mehta, J. Math. Phys. 4, 701 (1963).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 12.
    C.M. Marcus, private communication, unpublished.Google Scholar
  14. 13.
    S. Washburn, in “Mesoscopic Phenomena in Solids,” eds. B.L. Altshuler,-P.A. Lee and R.A. Webb (Elsevier, 1991); see also, S. Washburn and R.A. Webb, Adv. Phys. 35 (1986) 375; R.A. WebbGoogle Scholar
  15. S. Washburn, C.P. Umbach, and R.B. Laibowitz, Phys. Rev. Lett 54, 2696 (1985);ADSCrossRefGoogle Scholar
  16. R.A. Webb et al., in “Physics and Technology of Submicron Structures,” eds. H. Heinrich, G. Bauer and F. Kuchar Springer Series in Solid State Science, vol. 83 ( Springer, Berlin, 1988 ), p. 98.Google Scholar
  17. 14.
    D.E. Khmel’nitskii, Physica B+C 126, 235 (1984).ADSCrossRefGoogle Scholar
  18. 15.
    L.P. Gor’kov, A.I. Larkin, and D.E. Khmel’nitskii, JETP Lett. 30, 228 (1979).ADSGoogle Scholar
  19. 16.
    B.L. Altshuler, A.G. Aronov and B.Z. Spivak, JETP Lett. 33, 94 (1981).ADSGoogle Scholar
  20. 17.
    D.Y. Sharvin and Y.V. Sharvin, JETP Lett. 34, 272 (1981).ADSGoogle Scholar
  21. 18.
    B.L. Altshuler and B.I. Shklovskü, JETP 64, 127 (1986).Google Scholar
  22. 19.
    Y. Imry, Europhys. Lett. 1, 249 (1986).ADSCrossRefGoogle Scholar
  23. 20.
    M.L. Mehta, Random Matrices ( Academic Press, New York, 1991 );zbMATHGoogle Scholar
  24. T. Guhr, A. Mueller-Groeling and H.A. Weidenmüller, Phys. Rep. 299, 189 (1998), cond-mat/9707301.Google Scholar
  25. 21.
    V.N. Prigodin, B.L. Altshuler, K.B. Efetov and S. Iida, Phys. Rev. Lett. 72, 546 (1994).ADSCrossRefGoogle Scholar
  26. 22.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958).ADSCrossRefGoogle Scholar
  27. 23.
    J. Zittartz and J.S. Langer, Phys. Rev. 148, 741 (1966).ADSzbMATHCrossRefGoogle Scholar
  28. 24.
    B.I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966).ADSCrossRefGoogle Scholar
  29. 25.
    J.T. Edwards and D.J. Thouless, J. Phys. C 5, 807 (1972).ADSCrossRefGoogle Scholar
  30. 26.
    D.J. Thouless, in “La matière mal condensée,” eds. R. Balian, R. Maynard and G. Toulouse ( North-Holland, Amsterdam, 1978 ), P. 1.Google Scholar
  31. 27.
    E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakr-ishnan; Phys. Rev. Lett. 42, 673 (1979).ADSCrossRefGoogle Scholar
  32. 28.
    C.M. Marcus, private communication.Google Scholar
  33. 29.
    L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G. Austing, T. Honda, and S. Tarucha, Excitation spectra of circular few-electron quantum dots,Science 278 1788 (1997), tond-. mat/9708229.Google Scholar
  34. 30.
    L.P. Kouwenhoven and P.L. McEuen, Single Electron Tunneling Through a Quantum Dot, in “Nano-Science and Technology”, ed. G. Timp ( AIP Press, New York, 1996 ).Google Scholar
  35. 31.
    M.A. Kastner, Rev. Mod. Phys. 64, 849 (1992).ADSCrossRefGoogle Scholar
  36. 32.
    L.S. Levitov and A.V. Shytov, cond-mat/9607136.Google Scholar
  37. 33.
    J. von Delft et al., Ann Phys. 263, 1 (1998).ADSGoogle Scholar
  38. 34.
    B.L. Altshuler and A.G. Aronov, Sol. State. Commun 39, 115 (1979).CrossRefGoogle Scholar
  39. 35.
    B.L. Altshuler and A.G. Aronov, in “Electron-Electron Interactions in Disordered Systems,” eds. A.L. Efros and M. Pollak ( North-Holland, Amsterdam, 1985 ), p. 1.CrossRefGoogle Scholar
  40. 36.
    M.P. Sarachik and S.V. Kravchenko, Novel phenomena in dilute electron systems in two dimensions,Proc. Natl. Acad. Sci. USA 96 5900 (1999), tond-mat/9903292.Google Scholar
  41. 37.
    A.M. Finkelshtein, Sov. Sci. Rev. A Phys. 14, 1 (1990).Google Scholar
  42. 38.
    G. Bergmann, Phys. Rep. 107, 1 (1984).ADSCrossRefGoogle Scholar
  43. 39..
    P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).ADSCrossRefGoogle Scholar
  44. 40.
    S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986).ADSCrossRefGoogle Scholar
  45. 41.
    B.L. Altshuler and B.D. Simons, Universalities: from Anderson Localization to Quantum Chaos, a course of 10 lectures in the proceedings of the 1994 Summer Session LXI on “Mesoscopic Quantum Physics” at Les Houches, Nato ASI, eds. E. Akkermans, G. Montambaux, J.-L. Pichard and J. Zinn-Justin.Google Scholar
  46. 42.
    T.V. Ramakrishnan, in “Chance and Matter,” eds. J. Souletie, J. Vannimenus and R. Stora ( North-Holland, Amsterdam, 1987 ), p. 213.Google Scholar
  47. 43.
    B.L. Altshuler, A.G. Aronov, DE. Khmel’nitskii and A.I. Larkin, in “Quantum Theory of Solids,” ed. I.M. Lifshits ( Mir Publishers, Moscow, 1982 ), p. 130.Google Scholar
  48. 44.
    S.F. Edwards, Philos. Mag. 3, 1020 (1958).ADSzbMATHCrossRefGoogle Scholar
  49. 45.
    F.J. Wegner, Z. Phys. B 35, 207 (1979).Google Scholar
  50. 46.
    K B. Efetov, Sov. Phys. JETP 82, 872 (1982); ibid., 83, 833 (1982).MathSciNetGoogle Scholar
  51. 47.
    K.B. Efetov, Adv. Phys. 32, 53 (1983); K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, New York, 1997 ).Google Scholar
  52. 48.
    J.J.M. Verbaarschot, H.A. Weidenmüllerand M.R. Zirnbauer, Phys. Rep. 129, 367 (1985).MathSciNetADSCrossRefGoogle Scholar
  53. 49.
    S.F. Edwards and P.W. Anderson, J. Phys. F 5, 965 (1975).ADSCrossRefGoogle Scholar
  54. 50.
    V.J. Emery, Phys. Rev. B 11, 239 (1975).ADSCrossRefGoogle Scholar
  55. 51.
    J.J.M. Verbaarschot and M.R. Zirnbauer, J. Phys. A 17, 1093 (1985).MathSciNetADSCrossRefGoogle Scholar
  56. 52.
    M.R. Zirnbauer, cond-mat/9903338.Google Scholar
  57. 53.
    A. Kamenev and M. Mezard, cond-mat/9901110; Gond-mat/9903001.Google Scholar
  58. 54.
    I.V. Yurkevitch and I.V. Lerner, cond-mat/9903025.Google Scholar
  59. 55.
    F.A. Berezin, Introduction to Superanalysis (Reidel, Dodrecht,1987).Google Scholar
  60. 56.
    B.D. Simons, O. Agam and A.V. Andreev, J. Math. Phys. 38, 1982 (1997).MathSciNetADSzbMATHCrossRefGoogle Scholar
  61. 57.
    B.D. Simons and B.L. Altshuler, Phys. Rev: Lett. 70, 4063 (1993), ibid., Phys. Rev. B 48, 5422 (1993) B.D. Simons, P.A. Lee and B.L. Altshuler, Phys. Rev. Lett. 70, 4122 (1993).ADSGoogle Scholar
  62. 58.
    For a review, see M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics ( Springer, New York, 1990 );Google Scholar
  63. F. Haake, Signatures of Quantum Chaos ( Springer, Berlin, 1991 ).zbMATHGoogle Scholar
  64. 59.
    D. Delande, in “Chaos and Quantum Physics,” Les Houches SummerGoogle Scholar
  65. School Proceedings, vol. 52, eds. M.-J. Giannoni, A. Voros and J. Zinn-Justin ( North-Holland, Amsterdam, 1991 ).Google Scholar
  66. 60.
    B.D. Simons, A. Hashimoto, M. Courtney, D. Kleppner and B.L. Altshuler, New class of universal correlations in the spectra of hydrogen in a magnetic field, Phys. Rev. Lett. 71, 2899 (1993).ADSCrossRefGoogle Scholar
  67. 61.
    V.N. Prigodin, N. Taniguchi, A. Kudrolli, V. Kidambi and S. Shridar, Spatial correlation in quantum chaotic systems with three-reversal symmetry: theory and experiment, Phys. Rev. Lett. 75, 2392 (1995).ADSCrossRefGoogle Scholar
  68. 62.
    E.P. Wigner, Ann. Math. 53, 36 (1953).MathSciNetCrossRefGoogle Scholar
  69. 63.
    C. E. Porter, ed. Statistical Theories of Spectral Fluctuations ( Academic Press, New York, 1965 ).Google Scholar
  70. 64.
    L.P. Gor’kov and G.M. Eliashberg,_Sov. Phys. JETP 21, 940 (1965).ADSGoogle Scholar
  71. 65.
    L. Schäfer and F.J. Wegner, Z. Phys. B 38, 113 (1980).MathSciNetADSCrossRefGoogle Scholar
  72. 66.
    K.B. Efetov, A.I. Larkin and D.E. Khmel’nitskii, Sov. Phys. JETP 52, 568 (1980).ADSGoogle Scholar
  73. 67.
    A. Houghton, A. Jevicky, R.D. Kenway and A. M. M. Pruisken, Phys. Rev. Lett. 45, 394 (1980).MathSciNetADSCrossRefGoogle Scholar
  74. 68.
    K. Junglich and R. Oppermann, Z. Phys. B 38, 93 (1980).MathSciNetADSCrossRefGoogle Scholar
  75. 69.
    S. Hikami, Phys. Rev. B 24, 2671 (1981).CrossRefGoogle Scholar
  76. 70.
    A.J. MaKane and M. Stone, Ann Phys. (NY) 131, 36 (1981).ADSCrossRefGoogle Scholar
  77. 71.
    Bohigas, M.J. Giannoni and C. Schmidt, Phys. Rev. Lett. 52, 1 (1984); J. Physique Lett. 45, L1615 (1984).Google Scholar
  78. 72.
    M.C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 (1970); 12, 343 (1971).Google Scholar
  79. 73.
    M.V. Berry, Proc. Roy. Soc. London A 400, 229 (1985).ADSzbMATHCrossRefGoogle Scholar
  80. 74.
    M.V. Berry, in “Chaos and Quantum Physics”, Les Houches Summer School Proceedings, vol. 52, eds. M.-J. Gianonni, A. Voros and J. Zinn-Justin ( North-Holland, Amsterdam, 1991 ), p. 251.Google Scholar
  81. 75.
    P. Cvitanovie and B. Eckhardt, J. Phys. A 24, L237 (1991).ADSCrossRefGoogle Scholar
  82. 76.
    O. Agam, B.L. Altshuler and A.V. Andreev, Phys. Rev. Lett. 75, 4389 (1995).MathSciNetADSzbMATHCrossRefGoogle Scholar
  83. 77.
    E. Bogomolny and J.P. Keating, Phys. Rev. Lett. 77, 1472 (1996).ADSzbMATHCrossRefGoogle Scholar
  84. 78.
    B.A. Muzykantskii and D.E. Khmel’nitskii, JETP Lett. 62, 76 (1995)ADSGoogle Scholar
  85. 79.
    A.V. Andreev, O. Agam, B.D. Simons and B.L. Altshuler, Phys. Rev. Lett. 76 3947 (1996).ADSCrossRefGoogle Scholar
  86. 80.
    A. Altland, C.R. Offer and B.D. Simons, in “Supersymmetry and Trace Formulae: Chaos and Disorder,” eds. I.V. Lerner, J.P. Keating and D.E Khmel’nitskii (Plenum Press, 1999 ), p. 17.CrossRefGoogle Scholar
  87. 81.
    M. R. Zirnbauer, in “Supersymmetry and Trace Formulae: Chaos and Disorder,” eds. I.V. Lerner, J.P. Keating and D. E. Khmel’nitskii (Plenum Press, 1999), p. 153, chao-dyn/9812023.Google Scholar
  88. 82.
    P. Gaspard, G. Nicolis, A. Provata and S. Tasaki, Phys. Rev. E. 51, 74 (1995).MathSciNetADSCrossRefGoogle Scholar
  89. 83.
    D. Ruelle, Phys. Rev. Lett 56, 405 (1986).CrossRefGoogle Scholar
  90. 84.
    M. Pollicot, Ann. Math. 131, 331 (1990).CrossRefGoogle Scholar
  91. 85.
    G. Nicolis and C. Nicolis, Phys. Rev. A. 38, 427 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  92. 86.
    H.H. Hasegawa and D.J. Driebe, Phys. Rev. E. 50, 1781 (1994).MathSciNetADSCrossRefGoogle Scholar
  93. 87.
    I.L. Aleiner and A.I. Larkin, Chaos, Solitons and Fractals 8, 1179 (1997).MathSciNetADSzbMATHCrossRefGoogle Scholar
  94. 88.
    K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980); K. von Klitzing, Rev. Mod. Phys. 50, 655 (1987).Google Scholar
  95. 89.
    A.M.M. Pruisken, Nuclear Phys. B 235, 277 (1984); H. Levine, S. Libby and A.A.M. Pruisken, Nuclear Phys. B 240, 30, 49, 71 (1985).Google Scholar
  96. 90.
    D.E. Khmel’nitskii, JETP Lett. 38; 552 (1983).ADSGoogle Scholar
  97. 91.
    H.P. Wei, D.C. Tsui, M.A. Paalanen and A.M.M. Pruisken, Phys. Rev, Lett. 61, 1294 (1988).ADSCrossRefGoogle Scholar
  98. 92.
    M.R. Zirnbauer, hep-th/9905054.Google Scholar
  99. 93.
    M. Janssen, O. Viehwger, U. Fastenrath and J. Hajdu, Introduction to the Theory of the Integer Quantum Hall Effect (VCH Verlagsge-sellschaft mbH, D-69451 Weinheim, Germany, 1994 ).Google Scholar
  100. 94.
    R.E. Prange and S.M. - Girvin, eds., The Quantum Hall Effect ( Springer-Verlag; New York, 1987 ).Google Scholar
  101. 95.
    L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47 1515 (1964) [Sov. Phys. JETP 20 1018 (1965)].Google Scholar
  102. 96.
    M.L. Horbach and G. Schön, Ann. Phys. 2, 51 (1993).CrossRefGoogle Scholar
  103. 97.
    A. Kamenev and A.V. Andreev, cond-mat/9810191.Google Scholar
  104. 98.
    M. Gell-Mann and K.A. Bruckner, Phys. Rev. 106, 364 (1957); M. Gell-Mann, Phys. Rev. 106, 369 (1957).zbMATHCrossRefGoogle Scholar
  105. 99.
    A.G. Aronov and Y.V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).ADSCrossRefGoogle Scholar
  106. 100.
    B.L. Altshuler, A.G. Aronov, M.E. Gershenson and Y.V. Sharvin, in “Physics Reviews”, ed. I.M. Khalatnikov (Harwood Academic Pub= Switzerland, 1987 ), p. 225.Google Scholar
  107. 101.
    M.R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).MathSciNetADSzbMATHCrossRefGoogle Scholar
  108. 102.
    S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, ( Academic Press, New York, 1978 ).zbMATHGoogle Scholar
  109. 103.
    T. Nagao and S. Slevin, J. Math. Phys. 34, 2075 (1993); ibid., 34, 2317 (1993).Google Scholar
  110. 104.
    J.J.M. Verbaaschot and I. Zahed, Phys. Rev. Lett. 70, 3852 (1993); J.J.M. Verbaaschot, Phys. Rev. Lett. 72, 2531 (1994).Google Scholar
  111. 105.
    A. Altland and M.R. Zirnbauer, Phys. Rev. Lett. 76, 3420 (1996).ADSCrossRefGoogle Scholar
  112. 106.
    R. Oppermann, Nuclear Phys. B 280, 753 (1987).MathSciNetADSCrossRefGoogle Scholar
  113. 107.
    V.E. Kravtsov and R. Oppermann, Phys. Rev. B 43, 10865 (1991).ADSCrossRefGoogle Scholar
  114. 108.
    A. Altland, J.P.D. Taras-Semchuk and B.D. Simons,Field theory of mesoscopic f;uctuations in superconductor/normal-metal systems,Adv. Phys. 49 321 (2000); cf. http://www.tandf. co. uk.Google Scholar
  115. 109.
    R. Bundschuh, C. Cassanello, D. Serban and M.R. Zirnbauer, Nucl. Phys. B 532 689 (1998), cond-mat/9806172.Google Scholar
  116. 110.
    P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).ADSCrossRefGoogle Scholar
  117. 111.
    G. Eilenberger, Z. Phys. 182, 427 (1965); ibid., 214, 195 (1968).Google Scholar
  118. 112.
    K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970).CrossRefGoogle Scholar
  119. 113.
    For a review, see Nonequilibrium Superconductivity,ed V.L. Ginzburg (Nova Science Publications, 1988).Google Scholar
  120. 114.
    M.Yu. Kupriyanov and V.F. Lukichev, Zh. Eksp. Teor. Fiz. 94 139 (1988) [Sov. Phys. JETP 67 1163 (1988)].Google Scholar
  121. 115.
    L.P. Gor’kov and P. A. Kalugin, Pis’ma Zh. Eksp. Teor. Fiz. 41 208 (1985) [JETP Lett. 41 253 (1985)].Google Scholar
  122. 116.
    P.A. Lee, Phys. Rev. Lett. 71, 1887 (1993).CrossRefGoogle Scholar
  123. 117.
    A.V. Balatsky, A. Rosengren, and B.L. Altshuler, Phys. Rev. Lett. 73, 720 (1994).ADSCrossRefGoogle Scholar
  124. 118.
    A.A. Nersesyan, A.M. Tsvelik, and F. Wenger, Phys. Rev. Lett. 72, 2628 (1994); Nuclear Phys. B 438, 561 (1994).ADSGoogle Scholar
  125. 119.
    K. Ziegler, M.H. Hettler, and P.J. Hirschfeld, Phys. Rev. Lett. 77, 3013 (1996).ADSCrossRefGoogle Scholar
  126. 120.
    T. Senthil et al., Phys. Rev. Lett. 81 4704 (1998); T. Senthil and M.P.A. Fisher, preprint cond-mat/9810238.Google Scholar
  127. 121.
    A. Altland, B. D. Simons and M. R. Zirnbauer, Phys. Rev. B60, 6893 (1999).CrossRefGoogle Scholar
  128. 122.
    P.A. Lee and D.S. Fisher, Phys. Rev. Lett. 47, 882 (1981);MathSciNetADSCrossRefGoogle Scholar
  129. T. Sugiyama and N. Nagaosa, Phys. Rev. Lett. 70, 1980 (1993);ADSCrossRefGoogle Scholar
  130. Y. Avishai et al., Phys. Rev. B 47, 9561 (1993);ADSCrossRefGoogle Scholar
  131. D.Z. Liu et al., Phys. Rev. B 52, 5858 (1995);ADSCrossRefGoogle Scholar
  132. D.N. Sheng and Z.Y. Weng, Phys. Rev. Lett. 75, 2388 (1995);ADSCrossRefGoogle Scholar
  133. K. Yakubo and Y. Goto, Phys. Rev. B 54, 13432 (1996);ADSCrossRefGoogle Scholar
  134. K. Yang and R.N. Bhatt, Phys. Rev. B 55, R1922 (1997);ADSCrossRefGoogle Scholar
  135. M. Batsch et al., Physica B 249–251, 792 (1998);Google Scholar
  136. X.C. Xie et al., Phys. Rev. Lett. 80, 3563 (1998);ADSCrossRefGoogle Scholar
  137. A. Furusaki, Phys. Rev. Lett. 82, 604 (1999), cond-mat/9808059.Google Scholar
  138. 123.
    G. Gavazzi et al., Phys. Rev. B 47, 15170 (1993);ADSCrossRefGoogle Scholar
  139. V. Kalmeyer et al., Phys. Rev. B 48, 11095 (1993);ADSCrossRefGoogle Scholar
  140. S.-C. Zhang and D.P. Arovas, Phys. Rev. Lett. 72, 1886 (1994);ADSCrossRefGoogle Scholar
  141. Y.B. Kim et al., Phys. Rev. B 52, 16646 (1995).ADSCrossRefGoogle Scholar
  142. 124.
    D.K.K. Lee and J.T. Chalker, Phys. Rev. Lett. 72, 1510 (1994).ADSCrossRefGoogle Scholar
  143. 125.
    A.G. Aronov et al., Phys. Rev. B 49, 16609 (1994).ADSCrossRefGoogle Scholar
  144. 126.
    J. Miller and J. Wang, Phys. Rev. Lett. 76, 1461 (1996).ADSCrossRefGoogle Scholar
  145. 127.
    B.I. Halperin, P.A. Lee and N. Read, Phys. Rev. B 47, 7912 (1993).ADSCrossRefGoogle Scholar
  146. 128.
    S. Hikami et al., Nuclear Phys. B 408, 2454 (1993);CrossRefGoogle Scholar
  147. D.K.K. Lee, Phys. Rev. B 50, 7743 (1994);ADSCrossRefGoogle Scholar
  148. K. Minakuchi and S. Hikami, Phys. Rev. B 53, 10898 (1996);ADSCrossRefGoogle Scholar
  149. S. Hikami and K. Minakuchi, Phys. Rev. B 55, 7155 (1997).ADSCrossRefGoogle Scholar
  150. 129.
    N. Nagaosa and P.A. Lee, Phys. Rev. Lett. 64, 2450 (1990); X.-G. Wen and P.A. Lee, Phys. Rev. Lett. 76 503 (1996).ADSCrossRefGoogle Scholar
  151. 130.
    E. Müller-Hartmann and E. Dagotto, Phys. Rev. B 54, R6819 (1996).ADSCrossRefGoogle Scholar
  152. 131.
    R. Gade, Nuclear Phys. B 398, 499 (1993); R. Gade and F. Wegner, Nuclear Phys. B398, 499 (1991).ADSCrossRefGoogle Scholar
  153. 132.
    T. Fukui, Nucl. Phys. B 562, 477 (1999), cond-mat/9902352.Google Scholar
  154. 133.
    M.R. Zirnbauer, J. Phys. A 29, 7113 (1996).MathSciNetADSzbMATHCrossRefGoogle Scholar
  155. 134.
    This is an example of what in QCD is known as the phenomenon of “chiral symmetry breaking”: Neglecting quark masses, the microscopic Yang-Mills action (corresponing to our 0-action in the small e-limit), is invariant under G x G where G is a symmetry group whose detailed structure depends on the flavour content of the theory, etc. (In our formalism, its rôle is played by GL(1 1 1).) Now, in the effective low energy QCD Lagrangian the microscopic chiral symmetry is spontaneously broken down to G x G i G in very much the same way as the symmetry group of our low energy Z-functional is broken down to GL(111) from GL(111) x GL(111).Google Scholar
  156. 135.
    A. Altland and B.D. Simons, J. Phys. A 32, L353 (1999), condmat/9811134.Google Scholar
  157. 136.
    S. Hikami and A. Zee, Nuclear Phys. B 408, 415 (1993); E. Brezin, S. Hikami and A. Zee, Nuclear Phys. B 464, 411 (1996).Google Scholar
  158. 137.
    A.V. Andreev, B.D. Simons and N. Taniguchi, Nuclear Phys. B 432 [FS], 487 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  159. 138.
    For an odd number of sites, the block matrix elements of the Hamiltonian assume a rectangular form, the determinant vanishes and states at zero energy appear.Google Scholar
  160. 139.
    P.W. Brouwer et al., Phys. Rev. Lett. 81, 862 (1998).ADSCrossRefGoogle Scholar
  161. 140.
    C.M. Mudry, P.W. Brouwer, and A. Furusaki, Phys. Rev. B 59, 13221 (1999), cond-mat/9903026; P.W. Brouwer, C.M. Mudry and A. Furusaki, Phys. Rev. Lett 84, 2913 (2000), cond-mat/9904200; Nucl. Phys. B 565, 653 (2000), cond-mat/9904201.Google Scholar
  162. 141.
    C. Bernard and M. Golterman, Phys. Rev. D 49, 486 (1994).ADSCrossRefGoogle Scholar
  163. 142.
    T. Guhr et al., Phys. Rep. 299, 190 (1998).MathSciNetADSCrossRefGoogle Scholar
  164. 143.
    M.B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).MathSciNetADSCrossRefGoogle Scholar
  165. 144.
    V.V. Sokolov and V.G. Zelevinsky, Phys. Lett. B 202, 10 (1988);ADSCrossRefGoogle Scholar
  166. F. Haake et al., Zeit. Phys. B 88, 359 (1992);ADSCrossRefGoogle Scholar
  167. N. Lehmann et al., Nucl. Phys. A 582, 223 (1995);ADSCrossRefGoogle Scholar
  168. Y.V. Fyodorov and H.-J. Sommers, J. Math. Phys. 38, 1918 (1997).MathSciNetADSzbMATHCrossRefGoogle Scholar
  169. 145.
    H. Sompolinsky, A. Crisanti, and H.-J. Sommers, Phys. Rev. Lett. 61, 259 (1988).MathSciNetADSCrossRefGoogle Scholar
  170. 146.
    N. Hatano and D.R. Nelson, Phys. Rev. Lett. 77, 570 (1996); Phys. Rev. B 56, 8651 (1997).CrossRefGoogle Scholar
  171. 147.
    K.B. Efetov, Phys. Rev. Lett. 79, 491 (1997).CrossRefGoogle Scholar
  172. 148.
    S.F. Edwards, Proc. Roy. Soc. 85, 613 (1965).zbMATHGoogle Scholar
  173. 149.
    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics ( World Scientific, Singapore, 1995 ).Google Scholar
  174. 150.
    H.-J. Sommers et al., Phys. Rev. Lett. 60, 1895 (1988).MathSciNetADSCrossRefGoogle Scholar
  175. 151.
    J.T. Chalker and J. Wang, Phys. Rev. Lett. 79, 1797 (1997).Google Scholar
  176. 152.
    A.V. Izyumov and B.D. Simons, Europhys. Lett. 45, 290 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • B. D. Simons
  • A. Altland

There are no affiliations available

Personalised recommendations