Beyond CFT: Deformed Virasoro and Elliptic Algebras

  • Satoru Odake
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

In this lecture we discuss “beyond CFT” from a symmetry point of view. After reviewing the Virasoro algebra, we introduce the deformed Virasoro algebras and elliptic algebras. These algebras appear in solvable lattice models and we study them by the free field approach.

Keywords

Hopf Algebra Vertex Operator Singular Vector Operator Product Expansion Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B241 (1984), 333–380.MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    C. Itzykson, H. Saleur, and J.-B. Zuber (eds.), Conformal Invariance and Applications to Statistical Mechanics, World Scientific, Singapore, 1988;MATHGoogle Scholar
  3. P. Ginsparg, “Applied conformal field theory,” 1–168, in Les Houches 1988, fields, strings and critical phenomena edited by E. Brézin and J. Zinn-Justin, North-Holland, 1990;Google Scholar
  4. C. Itzykson and J.-M. Drouffe, Statistical Field Theory vols. 1, 2, Cambridge Univ. Press, 1989;CrossRefGoogle Scholar
  5. S.V. Ketov, Conformal Field Theory, World Scientific, 1995;Google Scholar
  6. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Springer, 1997;Google Scholar
  7. V.G. Kac and A.K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, 1987.Google Scholar
  8. 3.
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, vols. 1, 2, Cambridge Univ. Press, 1987;MATHGoogle Scholar
  9. J. Polchinski, String Theory, vol. I, II, Cambridge Univ. Press, 1998.CrossRefGoogle Scholar
  10. 4.
    A.B. Zamolodchikov and Al.B. Zamolodchikov, “Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models,” Ann. Phys. 120 (1979), 253–291.MathSciNetADSCrossRefGoogle Scholar
  11. 5.
    M. Jimbo (ed.), Yang-Baxter Equation in Integrable Systems, World Scientific, 1989.Google Scholar
  12. 6.
    R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, 1982.Google Scholar
  13. 7.
    M. Jimbo, “Introduction to the Yang-Baxter equation,” Internat. J. Modern Phys. A4 (1989), 3759–3777.MathSciNetADSMATHCrossRefGoogle Scholar
  14. 8.
    M. Jimbo, T. Miwa, and M. Okado, “Solvable lattice models whose states are dominant integral weights of An−1(1)” Lett. Math. Phys. 14 (1987), 123–131.MathSciNetADSMATHCrossRefGoogle Scholar
  15. 9.
    E. Date, M. Jimbo, A. Kuniba, T. Miwa,and M. Okado, “Exactly solvable SOS models. II. Proof of the star-triangle relation and combinatorial identities,” Adv. Stud. Pure Math. 16 (1988), 17–122.MathSciNetGoogle Scholar
  16. 10.
    M. Jimbo, T. Miwa, and M. Okado, “Solvable lattice models related to the vector representation of classical simple Lie algebra,” Comm. Math. Phys. 116 (1988), 507–525.MathSciNetADSMATHCrossRefGoogle Scholar
  17. 11.
    V.G. Drinfeld, “Quasi-Hopf algebras,” Leningrad Math. J. 1 (1990), 1419–1457;MathSciNetGoogle Scholar
  18. V.G. Drinfeld, “On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(ℚ/ℚ),” Leningrad Math. J. 2 (1991), 829–860;MathSciNetGoogle Scholar
  19. V.G. Drinfeld, “Quantum groups,” Proc. ICM, Berkeley, CA, Amer. Math. Soc., 1986, 798–820.Google Scholar
  20. 12.
    A.B. Zamolodchikov, “Higher order integrals of motion in two-dimensional models of the field theory with a broken conformal symmetry,” JETP Lett. 46 (1987), 160–164;MathSciNetADSGoogle Scholar
  21. A.B. Zamolodchikov, “Integrable field theory from conformal field theory,” Adv. Stud. Pure Math. 19 (1989), 641–674.MathSciNetGoogle Scholar
  22. 13.
    T. Eguchi and S.-K. Yang, “Deformations of conformal field theories and soliton equations,” Phys. Lett. B224 (1989), 373–378;MathSciNetCrossRefGoogle Scholar
  23. T. Eguchi and S.-K. Yang, “Sine-Gordon theory at rational values of the coupling constant and minimal conformal models,” Phys. Lett. B235 (1990), 282–286.MathSciNetCrossRefGoogle Scholar
  24. 14.
    A.B. Zamolodchikov, “Integrals of motion and S-matrix of the (scaled) T = T c Ising model with magnetic field,” Internat. J. Modern Phys. A4 (1989), 4235–4248.MathSciNetADSCrossRefGoogle Scholar
  25. 15.
    F.A. Smirnov, “Exact S-matrices for ø1,2-perturbed minimal models of conformal field theory,” Internat. J. Modern Phys. A6 (1991), 1407–1428.MathSciNetADSCrossRefGoogle Scholar
  26. 16.
    B. Davies, O. Foda, M. Jimbo, T. Miwa, and A. Nakayashiki, “Diagonalization of the XXZ Hamiltonian by vertex operators,” Comm. Math. Phys. 151 (1993), 89–153 (hep-th/9204064).Google Scholar
  27. 17.
    J. Shiraishi, H. Kubo, H. Awata, and S. Odake, “A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions”, Lett. Math. Phys. 38 (1996), 33–51 (q-alg/9507034).Google Scholar
  28. 18.
    H. Awata, H. Kubo, S. Odake, and J. Shiraishi, “Quantum W N algebras and Macdonald polynomials”, Comm. Math. Phys. 179 (1996) 401–416 (q-alg/9508011).Google Scholar
  29. 19.
    E. Frenkel and N. Reshetikhin, “Quantum affine algebras and deformations of the Virasoro and W-algebra,” Comm. Math. Phys. 178 (1996), 237–264 (q-alg/9505025).MathSciNetADSMATHCrossRefGoogle Scholar
  30. 20.
    B. Feigin and E. Frenkel, “Quantum W-algebras and elliptic algebras,” Comm. Math. Phys. 178 (1996), 653–678 (q-alg/9508009).MathSciNetADSMATHCrossRefGoogle Scholar
  31. 21.
    S. Lukyanov and Y. Pugai, “Multipoint local height probabilities in the integrable RSOS model,” Nuclear Phys. B473 [FS] (1996), 631–658 (hep-th/9602074).MathSciNetADSMATHCrossRefGoogle Scholar
  32. 22.
    V. Brazhnikov and S. Lukyanov, “Angular quantization and form factors in massive integrable models,” Nuclear Phys. B512 (1998), 616–636 (hep-th/9707091).MathSciNetADSCrossRefGoogle Scholar
  33. 23.
    O. Foda, K. Iohara, M. Jimbo, R. Kedem, T. Miwa, and H. Yan, “An elliptic quantum algebra for sl2,” Lett. Math. Phys. 32 (1994), 259–268 (hep-th/9403094);MathSciNetADSMATHCrossRefGoogle Scholar
  34. O. Foda, K. Iohara, M. Jimbo, R. Kedem, T. Miwa, and H. Yan, “Notes on highest weight modules of the elliptic algebra A g,p(sl2),” Prog. Theor. Phys. Suppl. 118 (1995), 1–34 (hep-th/9405058).MathSciNetADSCrossRefGoogle Scholar
  35. 24.
    G. Felder, “Elliptic quantum groups,” Proc. ICMP, Paris 1994, Internat. Press, 1995, 211–218 (hep-th/9412207).Google Scholar
  36. 25.
    C. Fronsdal, “Generalization and exact deformations of quantum groups,” Publ. RIMS 33 (1997), 91–149 (q-alg/9606020);MathSciNetCrossRefGoogle Scholar
  37. C. Fronsdal, “Quasi-Hopf deformation of quantum groups,” Lett. Math. Phys. 40 (1997), 117–134 (q-alg/9611028).MathSciNetCrossRefGoogle Scholar
  38. 26.
    M. Jimbo, H. Konno, S. Odake, and J. Shiraishi, “Quasi-Hopf twistors for elliptic quantum groups,” Transformation Groups 4 (1999), 303–327 (q-alg/9712029).MathSciNetMATHCrossRefGoogle Scholar
  39. 27.
    V.C. Kac, “Contravariant form for infinite-dimensional Lie Algebras and superalgebras,” in Group Theoretical Methods in Physics, Lecture Notes in Phys., vol. 94, Springer, 1979, 441–445.Google Scholar
  40. 28.
    A. Rocha-Caridi, “Vacuum vector representations of the Virasoro algebra,” in Vertex Operators in Mathematics and Physics, MSRI Publications #3, Springer, 1984, 451–473.Google Scholar
  41. 29.
    D. Friedan, Z. Qiu, and S. Shenker, “Conformal invariance, unitarity, and critical exponents in two dimensions,” Phys. Rev. Lett. 52 (1984), 1575–1578.MathSciNetADSCrossRefGoogle Scholar
  42. 30.
    V1.S. Dotsenko and V.A. Fateev, “Four-point correlation functions and the operator algebra in 2d conformal invariant theories with central charge c < 1,” Nuclear Phys. B251 [FS13] (1985), 691–734.MathSciNetADSCrossRefGoogle Scholar
  43. 31.
    M. Kato and S. Matsuda, “Null field construction in conformal and superconformal algebras,” Adv. Stud. Pure Math. 16 (1988), 205–254.MathSciNetGoogle Scholar
  44. 32.
    H. Awata, Y. Matsuo, S. Odake, and J. Shiraishi, “Excited states of Calogero—Sutherland model and singular vectors of the W N algebra”, Nuclear Phys. B449 (1995), 347–374 (hep-th/9503043).MathSciNetADSMATHCrossRefGoogle Scholar
  45. 33.
    B.L. Feigin and D.B. Fuchs, Moscow preprint (1983); “Differential operators on the line and Verma modules over the Virasoro algebra,” Funct. Anal. Appl. 16 (1982), 114–126;CrossRefMATHGoogle Scholar
  46. B.L. Feigin and D.B. Fuchs, “Verma modules over the Virasoro algebra,” Funct. Anal. Appl. 17 (1983), 241–242.MATHCrossRefGoogle Scholar
  47. 34.
    G. Felder, “BRST approach to minimal models,” Nuclear Phys. B317 (1989), 215–236;MathSciNetADSCrossRefGoogle Scholar
  48. G. Felder, “BRST approach to minimal models,” Erratum ibid. B324 (1989), 548.MathSciNetADSGoogle Scholar
  49. 35.
    K. Mimachi and Y. Yamada, “Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials”, Comm. Math. Phys. 174 (1995), 447–455;MathSciNetADSMATHCrossRefGoogle Scholar
  50. K. Mimachi and Y. Yamada, “Singular vectors of Virasoro algebra in terms of Jack symmetric polynomials,” Kokyuroku 919 (1995), 68–78 (in Japanese).MathSciNetMATHGoogle Scholar
  51. 36.
    I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Univ. Press, 1995.Google Scholar
  52. 37.
    R.P. Stanley, “Some combinatorial properties of Jack symmetric functions,” Adv. Math. 77 (1989), 76–115.MathSciNetMATHCrossRefGoogle Scholar
  53. 38.
    Z.N.C. Ha, “Fractional statistics in one-dimension: View from exactly solvable model,” Nuclear Phys. B435 [FS] (1995), 604–636 (cond-mat/9410101).MathSciNetADSMATHCrossRefGoogle Scholar
  54. 39.
    H. Awata, H. Kubo, S. Odake, and J. Shiraishi, “Virasoro-type symmetries in solvable models,” preprint hep-th/9612233, to appear in CRM Series in Mathematical Physics, Springer.Google Scholar
  55. 40.
    P. Bouwknegt and K. Pilch, “The deformed Virasoro algebra at roots of unity,” Comm. Math. Phys. 196 (1998), 249–288 (q-alg/9710026).MathSciNetADSMATHCrossRefGoogle Scholar
  56. 41.
    M. Jimbo, M. Lashkevich, T. Miwa, and Y. Pugai, “Lukyanov’s screening operators for the deformed Virasoro algebra,” Phys. Lett. A229 (1997), 285–292 (hep-th/9607177).MathSciNetCrossRefGoogle Scholar
  57. 42.
    S.N.M. Ruijsenaars and H. Schneider, “A new class of integrable systems and its relation to solitons,” Ann. Physics 170 (1986), 370–405;MathSciNetADSMATHCrossRefGoogle Scholar
  58. S.N.M. Ruijsenaars, “Complete integrability of relativistic CalogeroMoser systems and elliptic function identities,” Comm. Math. Phys. 110 (1987), 191–213.MathSciNetADSMATHCrossRefGoogle Scholar
  59. 43.
    H. Konno, “Relativistic Calogero—Sutherland model: Spin generalization, quantum affine symmetry and dynamical correlation functions,” J. Phys. A29 (1996), L191 - L198 (hep-th/9508016);MathSciNetADSMATHGoogle Scholar
  60. H. Konno, “Dynamical correlation functions and finite size scaling in RuijsenaarsSchneider model,” Nuclear Phys. B473 (1996), 579–600 (hepth/9606012).MathSciNetADSMATHCrossRefGoogle Scholar
  61. 44.
    H.W. Braden and R. Sasaki, “The Ruijsenaars—Schneider model,” Prog. Theor. Phys. 97 (1997), 1003–1018 (hep-th/9702182).MathSciNetADSCrossRefGoogle Scholar
  62. 45.
    H. Awata, S. Odake, and J. Shiraishi, “Integral representations of the Macdonald symmetric polynomials”, Comm. Math. Phys. 179 (1996), 647–666 (q-alg/9506006).MathSciNetADSMATHCrossRefGoogle Scholar
  63. 46.
    Y. Hara, M. Jimbo, H. Konno, S. Odake, and J. Shiraishi, “Free field approach to the dilute A L models,” J. Math. Phys. 40 (1999), 3791–3826 (math.QA/9902150).MathSciNetADSMATHCrossRefGoogle Scholar
  64. 47.
    O. Foda, M. Jimbo, T. Miwa, K. Miki, and A. Nakayashiki, “Vertex operators in solvable lattice models,” J. Math. Phys. 35 (1994) 13–46 (hep-th/9305100).MathSciNetADSMATHCrossRefGoogle Scholar
  65. 48.
    M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models. CBMS Regional Conference Series in Mathematics, vol. 85, Amer. Math. Soc., 1994.Google Scholar
  66. 49.
    R.J. Baxter, “Partition function of the eight-vertex lattice model,” Ann. Physics 70 (1972), 193–228.MathSciNetADSMATHCrossRefGoogle Scholar
  67. 50.
    A. Belavin, “Dynamical symmetry of integrable quantum systems,” Nuclear Phys. B180 [FS2] (1981), 189–200.MathSciNetADSCrossRefMATHGoogle Scholar
  68. 51.
    E. K. Sklyanin, “Some algebraic structure connected with the Yang—Baxter equation,” Funct. Anal. Appl. 16 (1982), 263–270.MathSciNetCrossRefGoogle Scholar
  69. 52.
    G. E. Andrews, R. J. Baxter and P. J. Forrester, “Eight-vertex SOS model and generalized Rogers—Ramanujan-type identities,” J. Stat. Phys. 35 (1984), 193–266.MathSciNetADSMATHCrossRefGoogle Scholar
  70. 53.
    E. Date, M. Jimbo, T. Miwa and M. Okado, “Fusion of the eight vertex SOS model,” Lett. Math. Phys. 12 (1986), 209–215.MathSciNetADSCrossRefGoogle Scholar
  71. 54.
    B. Enriquez and G. Felder, “Elliptic quantum groups E τ,η(sl2) and quasi-Hopf algebras,” preprint q-alg/9703018.Google Scholar
  72. 55.
    H. Konno, “An elliptic algebra U q,p(sl2) and the fusion RSOS model,” Comm. Math. Phys. 195 (1998), 373–403 (q-alg/9709013).MathSciNetADSMATHCrossRefGoogle Scholar
  73. 56.
    V. G. Kac, Infinite-dimensional Lie algebra, 3rd ed., Cambridge Univ. Press, 1990.CrossRefGoogle Scholar
  74. 57.
    T. Tanisaki, “Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras,” Internat. J. Modern Phys. A7 (1992), Suppl. 1B, 941–961.Google Scholar
  75. 58.
    C. Fronsdal and A. Galindo, “8-vertex correlation functions and twist covariance of q-KZ equation,” preprint q-alg/9709028.Google Scholar
  76. 59.
    I.B. Frenkel and N.Yu. Reshetikhin, “Quantum affine algebras and holonomic difference equations,” Comm. Math. Phys. 146 (1992), 1–60.MathSciNetADSMATHCrossRefGoogle Scholar
  77. 60.
    M. Idzumi, K. Iohara, M. Jimbo, T. Miwa, T. Nakashima, and T. Tokihiro, “Quantum affine symmetry in vertex models,” Internat. J. Modern Phys. A8 (1993) 1479–1511 (hep-th/9208066).MathSciNetADSCrossRefGoogle Scholar
  78. 61.
    M. Jimbo, H. Konno, S. Odake, and J. Shiraishi, “Elliptic algebra U q,p(sl2): Drinfeld currents and vertex operators,” Comm. Math. Phys. 199 (1999), 605–647 (math.QA/9802002).MathSciNetADSMATHCrossRefGoogle Scholar
  79. 62.
    V. G. Drinfeld, “A new realization of Yangians and quantized affine algebras,” Soviet Math. Dokl. 36 (1988), 212–216.MathSciNetGoogle Scholar
  80. 63.
    I.B. Frenkel and N. Jing, “Vertex representations of quantum affine algebra,” Proc. Natl. Acad. Sci. USA 85 (1988), 9373–9377.MathSciNetADSMATHCrossRefGoogle Scholar
  81. 64.
    H. Awata, S. Odake, and J. Shiraishi, “Free boson realization of U q(slN)”, Comm. Math. Phys. 162 (1994), 61–83 (hep-th/9305146).MathSciNetADSMATHCrossRefGoogle Scholar
  82. 65.
    B. Hou and W. Yang, “Dynamically twisted algebra A q,p;π(gl2) as current algebra generalizing screening currents of q-deformed Vira-soro algebra,” J. Phys. A: Math. Gen. 31 (1998), 5349–5369 (qalg/9709024).MathSciNetADSMATHCrossRefGoogle Scholar
  83. 66.
    T. Miwa and R. Weston, “Boundary ABF models,” Nuclear Phys. B486 [PM] (1997), 517–545 (hep-th/9610094).MathSciNetADSMATHCrossRefGoogle Scholar
  84. 67.
    M. Jimbo and J. Shiraishi, “A coset-type construction for the deformed Virasoro algebra,” Lett. Math. Phys. 43 (1998), 173–185;MathSciNetMATHCrossRefGoogle Scholar
  85. M. Jimbo and J. Shiraishi, “A coset-type construction for the deformed Virasoro algebra,” Errata, ibid. 44 (1998), 349–352 (q-alg/9709037).MathSciNetGoogle Scholar
  86. 68.
    S.O. Warnaar, B. Nienhuis, and K.A. Seaton, “New construction of solvable lattice models including an Ising model in a field,” Phys. Rev. Lett. 69 (1992), 710–712.MathSciNetADSMATHCrossRefGoogle Scholar
  87. 69.
    S. O. Warnaar, P. A. Pearce, K. A. Seaton and B. Nienhuis, “Order parameters of the dilute A models,” J. Stat. Phys. 74 (1994), 469–531 (hep-th/9305134).MathSciNetADSMATHCrossRefGoogle Scholar
  88. 70.
    A. Kuniba, “Exact solution of solid-on-solid models for twisted affine Lie algebras A2n(2) and A2n-1(2),” Nuclear Phys. B355 (1991), 801–821.MathSciNetADSCrossRefGoogle Scholar
  89. 71.
    P. Bouwknegt and K. Schoutens, “W-symmetry in conformal field theory”, Phys. Rep. 223 (1993), 183–276 (hep-th/9210010).MathSciNetADSCrossRefGoogle Scholar
  90. 72.
    H. Awata, H. Kubo, S. Odake, and J. Shiraishi, “Quantum deformation of the W NAlgebra,” preprint q-alg/9612001, to appear in CRM Series in Mathematical Physics, Springer.Google Scholar
  91. 73.
    V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, 1993.MATHCrossRefGoogle Scholar
  92. 74.
    E. Frenkel and N. Reshetikhin, “Deformations of W-algebras associated to simple Lie algebras,” preprint q-alg/9708006.Google Scholar
  93. 75.
    B. Feigin, M. Jimbo, T. Miwa, A. Odesskii, and Y. Pugai, “Algebra of screening operators for the deformed Wn algebra,” Comm. Math. Phys. 191 (1998), 501–541 (q-alg/9702029).MathSciNetADSMATHCrossRefGoogle Scholar
  94. 76.
    J. Avan, L. Frappat, M. Rossi, and P. Sorba, “Poisson structures on the center of the elliptic algebra A q,p(sl(2)c),” Phys. Lett. A235 (1997), 323–334 (q-alg/9705012);MathSciNetMATHCrossRefGoogle Scholar
  95. J. Avan, L. Frappat, M. Rossi, and P. Sorba, “New W q,p(sl(2)) algebras from the elliptic algebra A q,p (s1(2)c),” Phys. Lett A239 (1998), 27–35 q alg/9706013);MathSciNetMATHCrossRefGoogle Scholar
  96. J. Avan, L. Frappat, M. Rossi, and P. Sorba, “Deformed W N algebras from elliptic s1(N) algebras,” Comm. Math. Phys. 199 (1999), 697–728 (math.QA/9801105);MathSciNetADSMATHCrossRefGoogle Scholar
  97. J. Avan, L. Frappat, M. Rossi, and P. Sorba, “Universal construction of W p,qalgebras,” preprint math.QA/9807048.Google Scholar
  98. 77.
    E. Frenkel, N. Reshetikhin, and M.A. Semenov-Tian-Shansky, “Drinfeld—Sokolov reduction for difference operators and deformations of W-Algebras I. The case of Virasoro algebra,” preprint q alg/9704011; M.A. Semenov-Tian-Shansky and A.V. Sevostyanov, “Drinfeld—Sokolov reduction for difference operators and deformations of W-algebras. II. General semisimple case,” preprint qalg/9702016.Google Scholar
  99. 78.
    P. Bouwknegt and K. Pilch, “On deformed VV-algebras and quantum affine algebras,” Adv. Theor. Math. Phys. 2 (1998), 125–165 (math. QA/9801112).MathSciNetGoogle Scholar
  100. 79.
    E. Frenkel and N. Reshetikhin, “The q-characters of representations of quantum affine algebras and deformations of W-algebras,” preprint math.QA/9810055.Google Scholar
  101. 80.
    Y. Asai, M. Jimbo, T. Miwa, and Y. Pugai, “Bosonization of vertex operators for the A N-1(1) face model,” J. Phys. A29 (1996), 6595–6616 (hep-th/9606095).MathSciNetADSMATHGoogle Scholar
  102. 81.
    M. Jimbo, H. Konno, S. Odake, Y. Pugai and J. Shiraishi, “Remarks on the free field construction for the ABF model in regime II,” in preparation.Google Scholar
  103. 82.
    V.G. Knizhnik and A.B. Zamolodchikov, “Current algebra and Wess—Zumino model in two dimensions,” Nuclear Phys. B247 (1984), 83–103.MathSciNetADSMATHCrossRefGoogle Scholar
  104. 83.
    A. Tsuchiya and Y. Kanie, “Vertex operators in conformal field theory on Pl and monodromy representations of braid group,” Adv. Stud. Pure Math. 16 (1988), 297–372;MathSciNetGoogle Scholar
  105. A. Tsuchiya and Y. Kanie, “Vertex operators in conformal field theory on Pl and monodromy representations of braid group,” Errata, ibid. 19 (1989), 675–682.MathSciNetGoogle Scholar
  106. 84.
    P. Goddard, A. Kent, and D. Olive, “Unitary representations of the Virasoro and super-Virasoro algebras,” Comm. Math. Phys. 103 (1986), 105–119.MathSciNetADSMATHCrossRefGoogle Scholar
  107. 85.
    K. Aomoto, Y. Kato and K. Mimachi, “A solution of Yang—Baxter equation as connection coefficients of a holonomic q-difference system,” Duke Math. J. 65 (1992), 7–15.MathSciNetGoogle Scholar
  108. F.A. Smirnov, “Dynamical symmetries of massive integrable models. I, Internat. J. Modern Phys. A7 Suppl. 1B (1992), 813–837; II, 839–858.Google Scholar
  109. 87.
    F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, World Scientific, 1992.Google Scholar
  110. 88.
    S. Lukyanov, “Free field representation for massive integrable models,” Comm. Math. Phys. 167 (1995), 183–226 (hep-th/9509037).MathSciNetADSMATHCrossRefGoogle Scholar
  111. 89.
    S. Lukyanov, “A note on the deformed Virasoro algebra,” Phys. Lett. B367 (1996), 121–125 (hep-th/9509037).MathSciNetMATHCrossRefGoogle Scholar
  112. 90.
    M. Jimbo, H. Konno, and T. Miwa, “Massless XXZ model and degeneration of the elliptic algebra A q,p(sl2),” Deformation theory and symplectic geometry, Eds. D. Sternheimer, J. Rawnsley and S. Gutt, Math. Phys. Studies, vol. 20, Kluwer, 1997, 117–138 (hep-th/9610079);Google Scholar
  113. H. Konno, “Degeneration of the elliptic algebra A q,p(sl2) and form factors in the sine-Gordon theory,” preprint hepth/9701034, to appear in CRM Series in Mathematical Physics, Springer.Google Scholar
  114. 91.
    S. Lukyanov, “Form factors of exponential fields in the sine-Gordon model,” Mod. Phys. Lett. A12 (1997) 2543–2550 (hepth/9703190);MathSciNetADSMATHCrossRefGoogle Scholar
  115. V. Fateev, D. Fradkin, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, “Expectation values of descendant fields in the sine-Gordon model,” Nuclear Phys. B540 [FS] (1999), 587–609 (hep-th/9807236);MathSciNetADSMATHCrossRefGoogle Scholar
  116. V. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, “Expectation values of local fields in the Bullough—Dodd model and integrable conformal field theories,” Nuclear Phys. B516 [FS] (1998), 652–674 (hep-th/9709034);MathSciNetADSMATHCrossRefGoogle Scholar
  117. S. Lukyanov, “Form-factors of exponential fields in the affine AN-1(1) Toda model,” Phys.Lett. B408 (1997), 192–200 (hep-th/9704213).MathSciNetMATHCrossRefGoogle Scholar
  118. 92.
    T. Oota, “Functional equations of form factors for diagonal scattering theories,” Nuclear Phys. B466 [FS] (1996), 361–382.MathSciNetADSMATHCrossRefGoogle Scholar
  119. 93.
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz,” Comm. Math. Phys. 177 (1996), 381–398 (hep-th/9412229);MathSciNetADSMATHCrossRefGoogle Scholar
  120. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, “Integrable` structure of conformal field theory. II. Q-operator and DDV equation,” Comm. Math. Phys. 190 (1997), 247–278 (hep-th/9604044);MathSciNetADSMATHCrossRefGoogle Scholar
  121. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, “Integrable structure of conformal field theory. III. The Yang—Baxter relation,” Comm. Math, Phys. 200 (1999), 297–324 (hep-th/9805008).MathSciNetADSMATHCrossRefGoogle Scholar
  122. 94.
    M. Lashkevich and Y. Pugai, “Free field construction for correlation functions of the eight-vertex model,” Nuclear Phys. B516 (1998), 623–651 (hep-th/9710099).MathSciNetADSMATHCrossRefGoogle Scholar
  123. 95.
    Y.-Z. Zhang and M.D. Gould, “Quasi-Hopf superalgebras and elliptic quantum supergroups,” preprint math. QA/9809156.Google Scholar
  124. 96.
    D. Arnaudon, E. Buffenoir, E. Ragoucy, and Ph. Roche, “Universal solutions of quantum dynamical Yang Baxter equations,” Lett. Math. Phys. 44 (1998), 201–214 (q-alg/9712037).MathSciNetMATHCrossRefGoogle Scholar
  125. 97.
    Y. Hara, “Free field _realization of vertex operators for level two modules of U q(sl2),” J. Phys. A31 (1998), 8483–8494 (math.QA/9809078).MathSciNetADSMATHGoogle Scholar
  126. 98.
    J. Ding and B. Feigin, “Quantized W-algebra of sl(2,1):, A construction from the quantization of screening operators,” preprint math.QA/9801084.Google Scholar
  127. 99.
    P. Bouwknegt, J. McCarthy, and K. Pilch, “Quantum group structure in the Fock space resolutions of sl(n) representations,” Comm. Matha Phys. 131 (1990), 125–155;MathSciNetADSMATHCrossRefGoogle Scholar
  128. P. Bouwknegt, J. McCarthy, and K. Pilch, “Free field approach to 2-dimensional conformal field theories,” Prog. Theor. Phys. Suppl. 102 (1990), 67–135.MathSciNetADSCrossRefGoogle Scholar
  129. 100.
    L. Clavelli and J.A. Shapiro, “Pomeron factorization in general dual models,” Nuclear Phys. B57 (1973), 490–535. (see Appendix C.1)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Satoru Odake

There are no affiliations available

Personalised recommendations