Easy Turbulence

Part of the CRM Series in Mathematical Physics book series (CRM)


It seems a safe bet that the understanding of developed turbulence, a long standing challenge for theoretical and mathematical physics, will enter into the third millennium as an unsolved problem. This is an introductory course to the subject. We discuss
  1. in Lecture 1:

    the Navier Stokes equations, existence of solutions, statistical description, energy balance and cascade picture;

  2. in Lecture 2:

    the Kolmogorov theory of three-dimensional turbulence versus intermittency, the Kraichnan-Batchelor theory of two-dimensional turbulence;

  3. in Lecture 3:

    the Richardson dispersion law and the breakdown of the Lagrangian flow;

  4. in Lecture 4:

    direct and inverse cascades and intermittency in the Kraichnan model of passive advection.



Weak Solution Euler Equation Inertial Range Anomalous Scaling Inverse Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.L.M.H. Navier, Mémoire sur le lois du mouvement des fluides. Mém. Acad. Roy. Sci. 6 (1823), 389–440.Google Scholar
  2. 2.
    G.G. Stokes, On some cases of fluid motion. Trans. Camb. Phil. Soc. 8 (1843), 105.Google Scholar
  3. 3.
    J.M. Burgers, The Nonlinear Diffusion Equation. D. Reidel, Dordrecht, 1974.zbMATHGoogle Scholar
  4. 4.
    G. Gallavotti, Some rigorous results about 3D Navier-Stokes, Lecture Notes, “Turbulence in spatially ordered systems,” Les Houches 1992, mp_arc/92–109.Google Scholar
  5. 5.
    R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam, 1984.zbMATHGoogle Scholar
  6. 6.
    D. Ruelle, The turbulent fluid as a dynamical system, in New Perspectives in Turbulence, ed. L. Sirovich, Springer, Berlin 1991, 123–138.CrossRefGoogle Scholar
  7. 7.
    T. Bohr, M.H. Jensen, G. Paladin, and A. Vulpiani, Dynamical System Approach to Turbulence. Cambridge University Press, Cambridge 1998.CrossRefGoogle Scholar
  8. 8.
    M.J. Vishik and A.V. Fursikov, Mathematical Problems of Statistical Hydrodynamics. Kluwer, Dordrecht 1988.CrossRefGoogle Scholar
  9. 9.
    G.K. Batchelor, Introduction to Fluid Dynamics. Cambridge Univ. Press, Cambridge 1967.zbMATHGoogle Scholar
  10. 10.
    A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics I II. MIT Press, Cambridge MA 1971 & 1975.Google Scholar
  11. 11.
    L.F. Richardson, Weather Prediction by Numerical Process. Cambridge Univ. Press, Cambridge 1922zbMATHGoogle Scholar
  12. 1.
    T. von Karman and L. Horwarth, On the statistical theory of isotropic turbulence, Proc. Roy. Soc. London A164 (1938), 192–215.ADSGoogle Scholar
  13. 2.
    A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers, C.R. Acad. Sci. URSS 30 (1941), 301–305.Google Scholar
  14. 3.
    U. Frisch, Turbulence: the Legacy of A.N. Kolmogorov, Cambridge Univ. Press, Cambridge, 1995.zbMATHGoogle Scholar
  15. 4.
    J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinear- ity 13 (2000), 249–255.MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 5.
    R. Benzi, S. Ciliberto, C. Baudet, and G. Ruiz Chavaria, On the scaling of three dimensional homogeneous and isotropic turbulence. Physica D80 (1995), 385–398.Google Scholar
  17. 6.
    R.H. Kraichnan, Inertialranges in two-dimensional turbulence, Phys. Fluids 10 (1967), 1417–1423.ADSCrossRefGoogle Scholar
  18. 7.
    G.K. Batchelor, Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids Suppl. II 12 (1969), 233–239.ADSzbMATHCrossRefGoogle Scholar
  19. 8.
    D. Bernard, On the three point velocity correlation functions in 2d forced turbulence, chao-dyn/9902010.Google Scholar
  20. 9.
    J. Paret and P. Tabeling, Intermittency in the 2D inverse cascade of energy: experimental observations, Phys. Fluids 10 (1998), 3126–3136.ADSCrossRefGoogle Scholar
  21. 10.
    J. Paret, M.C. Jullien, and P. Tabeling, Vorticity statistics in the two-dimensional enstrophy cascade, Phys. Rev. Lett. 83 (1999), 3418–3421, physics/9904044.ADSCrossRefGoogle Scholar
  22. 11.
    G. Boffetta, A. Celani, and M. Vergassola, Inverse cascade in two-dimensional turbulence: deviations from Gaussianity, chao-dyn/9906016.Google Scholar
  23. 1.
    L.F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. London A110 (1926), 709–737.ADSGoogle Scholar
  24. 2.
    Y. Brenier, A homogenized model for vortex sheet, Arch. Rational Mech. Anal. 138 (1997), 319–363.MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 3.
    A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Commun. Math. Phys. 210 (2000), 541–603.MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 4.
    R.H. Kraichnan, Small-scale structure of a scalar field connected by turbulence, Phys. Fluids 11 (1968), 945–963.MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 5.
    Y. Le Jan and O. Raimond, Solution statistiques fortes des équations différentielles stochastiques, C.R. Acad. Sci. 327 (1998), 893–89.zbMATHGoogle Scholar
  28. 6.
    K. Gawçdzki and M. Vergassola, Phase transition in the passive scalar advection, Physica D138 (2000), 63–90, cond-mat/9811399.ADSGoogle Scholar
  29. 1.
    A.M. Obukhov, Structure of the temperature field in a turbulent flow, Izv. Akad. Nauk SSSR, Geogr. Geofiz. 13 (1949), 58–69.Google Scholar
  30. 2.
    S. Corrsin, On the spectrum of isotropic temperature fluctuations in an isotropic turbulence, J. Appl. Phys. 22 (1951), 469–473.MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 3.
    R.H. Kraichnan, Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett. 72 (1994), 1016–1019.ADSCrossRefGoogle Scholar
  32. 4.
    B. Shraiman and E. Siggia, Anomalous scaling of a passive scalar in turbulent flow, C.R. Acad. Sci. 321 (1995), 279–284.zbMATHGoogle Scholar
  33. 5.
    K. Gawedzki and A. Kupiainen, Anomalous scaling of the passive scalar, Phys. Rev. Lett. 75 (1995), 3834–3837.ADSCrossRefGoogle Scholar
  34. 6.
    M. Chertkov, G. Falkovich, I. Kolokolov and V. Lebedev, Normal and anomalous scaling of the fourth-order correlation function of a randomly advected scalar, Phys. Rev. E52 (1995), 4924–4941.MathSciNetADSGoogle Scholar
  35. 7.
    U. Frisch, A. Mazzino, and M. Vergassola, Intermittency in passive scalar advection., Phys. Rev. Lett. 80 (1998), 5532–5535.ADSCrossRefGoogle Scholar
  36. 8.
    M. Chertkov, I. Kolokolov and M. Vergassola, Inverse versus direct cascades in turbulent advection, Phys. Rev. Lett. 80 (1998), 512–515.ADSCrossRefGoogle Scholar
  37. 9.
    K. Gawȩdzki, Intermittency of passive advection, in “Advances in Turbulence VII,” ed. U. Frisch, Kluwer Acad. Publ. 1998, 493–502.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

There are no affiliations available

Personalised recommendations