Lectures on Branes, Black Holes, and Anti-de Sitter Space

  • M. J. Duff
Part of the CRM Series in Mathematical Physics book series (CRM)


In the light of the duality between physics in the bulk of anti-de Sitter space and a conformal field theory on the boundary, we review the M2-, D3- and M5-branes and how their near-horizon geometry yields the compactification of D = 11 supergravity on S 7, Type IIB supergravity on S 5 and D = 11 supergravity on S 4, respectively. We discuss the “Membrane at the End of the Universe” idea and its relation to the corresponding superconformal singleton theories that live on the boundary of the AdS4, AdS5 and AdS7 vacua. The massless sectors of these compactifications are described by the maximally supersymmetric D = 4, D = 5 and D = 7 gauged supergravities. We construct the nonlinear Kaluza-Klein ansatzs describing the embeddings of the U(1)4, U(1)3 and U(1)2 truncations of these supergravities, which admit 4-charge AdS4, 3-charge AdS5 and 2-charge AdS7 black hole solutions. These enable us to embed the black hole solutions back in ten and eleven dimensions and reinterpret them as M2-, D3- and M5-branes spinning in the transverse dimensions with the black hole charges given by the angular momenta of the braves. A comprehensive Appendix lists the field equations, symmetries and transformation rules of D = 11 supergravity, Type IIB supergravity, and the M2-, D3- and M5- branes.


Black Hole Black Hole Solution Gauge Field Consistent Truncation Bosonic Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Press, Princeton, NJ, 1983.Google Scholar
  2. 2.
    S.J. Gates, Jr., M.T. Grisaru, M. Rocek, and W. Siegel, Superspace. One thousand and one lessons in supersymmetry, Benjamin/Cummings, Reading, MA, 1983.Google Scholar
  3. 3.
    P.P. Srivastava, Supersymmetry, superfields and supergravity, Adam Hilger, Bristol, 1986.Google Scholar
  4. 4.
    P. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore, 1986.Google Scholar
  5. 5.
    D. Bailin and A. Love, Supersymmetric gauge field theory and string theory, Institute of Physics, Bristol, 1994.zbMATHCrossRefGoogle Scholar
  6. 6.
    M.J. Duff, M-theory (the theory formerly known as strings), Int. J. Mod. Phys. All (1996), 5623.Google Scholar
  7. 7.
    M.J. Duff, R.R. Khuri, and J.X. Lu, String solitons,Phys. Rep. 259 (1995), 213, hep-th/9412184Google Scholar
  8. 8.
    D.Z. Freedman and A. Das, Gauge internal symmetry in extended supergravity, Phys. Lett. B74 (1977), 333.Google Scholar
  9. 9.
    S.M. Christensen, M.J. Duff, G.W. Gibbons, and M. Rocek, Vanishing one-loop 13-function in gauged N 4 supergravity, Phys. Rev. Lett. 45 (1980), 161.ADSCrossRefGoogle Scholar
  10. 10.
    M.J. Duff, Ultraviolet divergences in extended supergravity, in Proceedings of the 1981 Trieste conference “Supergravity 81,” eds. S. Fer-arra and J.G. Taylor, Cambridge Univ. Press, Cambridge—New York, 1982.Google Scholar
  11. 11.
    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B208 (1982), 323.Google Scholar
  12. 12.
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven dimensions, Phys. Lett. B76 (1978), 409.CrossRefGoogle Scholar
  13. 13.
    M.J. Duff and C.N. Pope, Kaluza-Klein supergravity and the seven sphere, in Proceedings of the 1982 Trieste conference “Supersymmetry and Supergravity 82”, eds. S. Ferrara, J.G. Taylor, and P. van Nieuwenhuizen, World Scientific, Singapore, 1983.Google Scholar
  14. 14.
    E. Cremmer and J. Scherk, Spontaneous compactification of extra space dimensions, Nucl. Phys. B118 (1977), 61.MathSciNetGoogle Scholar
  15. 15.
    P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B97 (1980), 233.MathSciNetCrossRefGoogle Scholar
  16. 16.
    M.J. Duff and P. van Nieuwenhuizen, Quantum inequivalence of different field representations, Phys. Lett. B94 (1980), 179.CrossRefGoogle Scholar
  17. 17.
    K. Pilch, P. van Nieuwenhuizen, and P.K. Townsend Compactification of d = 11 supergravity on 5 4 (or 11 = 7 + 4, too), Nucl. Phys. B242 (1984), 377.Google Scholar
  18. 18.
    M. Pernici, K. Pilch, and P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven dimensions, Phys. Lett. B143 (1984), 103.MathSciNetCrossRefGoogle Scholar
  19. 19.
    P.K. Townsend and P. van Nieuwenhuizen, Gauged seven-dimensional supergravity, Phys. Lett. B125 (1983), 41.MathSciNetCrossRefGoogle Scholar
  20. 20.
    M.J. Duff, B.E.W. Nilsson, and C.N. Pope, Kaluza-Klein supergravity, Phys. Rep. 130 (1986), 1.MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.H. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys. B226 (1983), 269.Google Scholar
  22. 22.
    P. Howe and P.C. West, The complete N = 2, d = 10 supergravity, Nucl. Phys. B238 (1984), 181.MathSciNetGoogle Scholar
  23. 23.
    J.H. Schwarz, Spontaneous compactification of extended supergravity in ten dimensions, Physica Al24 (1984), 543.Google Scholar
  24. 24.
    M. Günaydin and N. Marcus, The spectrum of the S 5 compactification of the N = 2, D = 10 supergravity and the unitary supermultiplet, Class. Quant. Gray. 2 (1985), L11.zbMATHCrossRefGoogle Scholar
  25. 25.
    H.J. Kim, L.J. Romans, and P. van Nieuwenhuizen, Mass spectrum of chiral ten-dimensional N = 2 supergravity on S 5, Phys. Rev. D32 (1985), 389.Google Scholar
  26. 26.
    M. Pernici, K. Pilch, and P. van Nieuwenhuizen, Gauged N = 8, d = 5 supergravity, Nucl. Phys. B259 (1985), 460.Google Scholar
  27. 27.
    M. Günaydin, L.J. Romans, and N.P. Warner, Gauged N = 8 super-gravity in five dimensions, Phys. Lett. B154 (1985), 268.CrossRefGoogle Scholar
  28. 28.
    M. Günaydin, Singleton and doubleton supermultiplets of space-time supergroups and infinite spin superalgebras, in Proceedings of the 1989 Trieste Conference “Supermembranes and Physics in 2 + 1 Dimensions”, eds. M.J. Duff, C.N. Pope, and E. Sezgin, World Scientific, Singapore 1990.Google Scholar
  29. 29.
    P.A.M. Dirac, A remarkable representation of the 3+2 de Sitter group, J. Math. Phys. 4 (1963), 901.MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    C. Fronsdal, Dirac supermultiplet, Phys. Rev. D26 (1982), 1988.Google Scholar
  31. 31.
    M. Flato and C. Fronsdal, Quantum field theory of singletons. The rac, J. Math. Phys. 22 (1981), 1100.Google Scholar
  32. 32.
    W. Heidenreich, All linear, unitary, irreducible representations of de Sitter supersymmetry with positive energy, Phys. Lett. B1. 10 (1982), 461.Google Scholar
  33. 33.
    D.Z. Freedman and H. Nicolai, Multiplet shortening in OSp(418), Nucl. Phys. B237 (1984), 342.zbMATHGoogle Scholar
  34. 34.
    E. Sezgin, The spectrum of the eleven dimensional supergravity cornpactified on the round seven sphere, Trieste preprint, 1983, in Super-gravity in Diverse Dimensions, vol. 2, eds A. Salam and E. Sezgin, World Scientific, Singapore, 1989, 1367; The spectrum of D = 11 supergravity via harmonic expansions on S 4 x S 7, Fortschr. Phys. 34 (1986), 217.MathSciNetGoogle Scholar
  35. 35.
    H. Nicolai and E. Sezgin, Singleton representations of OSp(N, 4), Phys. Lett. B143 (1984), 389.MathSciNetCrossRefGoogle Scholar
  36. 36.
    M. Günaydin, L.J. Romans, and N.P. Warner, Spectrum generating algebras in Kaluza—Klein theories, Phys. Lett. B146 (1984), 401.CrossRefGoogle Scholar
  37. 37.
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B135 (1978), 149.Google Scholar
  38. 38.
    M.J. Duff, Supermembranes: The first fifteen weeks, Class. Quanta Gray. 5 (1988), 189.MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    M.P. Blencowe and M.J. Duff, Supersingletons, Phys. Lett. B203 (1988), 229.MathSciNetCrossRefGoogle Scholar
  40. 40.
    H. Nicolai, E. Sezgin, and Y. Tanii, Conformally invariant supersymmetric field theories on Sp x S’ and super p-branes, Nucl. Phys. B305 (1988), 483.MathSciNetGoogle Scholar
  41. 41.
    E. Bergshoeff, E. Sezgin, and P. Townsend, Supermembranes and eleven-dimensional supergravity, Phys. Lett. B189 (1987), 75.MathSciNetCrossRefGoogle Scholar
  42. 42.
    E. Bergshoeff, E. Sezgin, and P. Townsend, Properties of the eleven-dimensional supermembrane theory, Ann Physics 185 (1988), 330.MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    E. Bergshoeff, E. Sezgin, and Y. Tanii, Stress tensor commutators and Schwinger terms in singleton theories, Int. J. Mod. Phys. A5 (1990), 3599.MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    E. Bergshoeff, M.J. Duff, C.N. Pope, and E. Sezgin, Supersymmetric supermembrane vacua and singletons, Phys. Lett. B199 (1988), 69.MathSciNetGoogle Scholar
  45. 45.
    E. Bergshoeff, M.J. Duff, C.N. Pope, and E. Sezgin, Compactifications of the eleven-dimensional supermembrane, Phys. Lett. B224 (1989), 71.MathSciNetCrossRefGoogle Scholar
  46. 46.
    M.J. Duff and C. Sutton, The membrane at the end of the universe, New Sci. 118 (1988), 67.Google Scholar
  47. 47.
    M.J. Duff, Classical and quantum supermembranes, Class. Quant. Gray. 6 (1989), 1577.Google Scholar
  48. 48.
    M.P. Blencowe and M.J. Duff, Supermembranes and the signature of spacetime, Nucl. Phys. B310 (1988), 387.MathSciNetzbMATHGoogle Scholar
  49. 49.
    E. Bergshoeff, A. Salam, E. Sezgin, and Y. Tanii, N = 8 supersingleton quantum field theory, Nucl. Phys. B305 (1988), 497.Google Scholar
  50. 50.
    M.J. Duff, C.N. Pope, and E. Sezgin, A stable supermembrane vacuum with a discrete spectrum, Phys. Lett. B225 (1989), 319.MathSciNetCrossRefGoogle Scholar
  51. 51.
    M.J. Duff and K.S. Stelle, Multi-membrane solutions of D = 11 supergravity, Phys. Lett. B253 (1991), 113.MathSciNetCrossRefGoogle Scholar
  52. 52.
    A. Achucarro, J. Evans, P. Townsend, and D. Wiltshire, Super p branes, Phys. Lett. B198 (1987), 441.MathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Günaydin, B.E.W. Nilsson, G. Sierra, and P.K. Townsend, Singletons and superstrings, Phys. Lett. B176 (1986), 45.CrossRefGoogle Scholar
  54. 54.
    M.J. Duff, P.K. Townsend, and P. van Nieuwenhuizen, Spontaneous compactification of supergravity on the three-sphere, Phys. Lett. B122 (1983), 232.MathSciNetGoogle Scholar
  55. 55.
    M.J. Duff, Supermembranes, lectures given at the T A S I Summer School, University of Colorado, Boulder, June 1996, the Topical Meeting, Imperial College, London, July 1996 and the 26th British Universities Summer School in Theoretical Elementary Particle, Physics, University of Swansea, September 1996. Fields, strings and duality Eds. C. Efthimiou and B. Greene. World Scientific, Singapore, 1997, 219Google Scholar
  56. 56.
    C.M. Hull, Duality and the signature of spacetime,JHEP 9811 (1998) 017, hep-th/9807127.Google Scholar
  57. 57.
    G.T. Horowitz and A. Strominger, Black strings and p-branes, Nucl. Phys. B360 (1991), 197.MathSciNetGoogle Scholar
  58. 58.
    M.J. Duff and J.X. Lu, The self-dual Type IIB superthreebrane, Phys. Lett. B273 (1991), 409.MathSciNetCrossRefGoogle Scholar
  59. 59.
    C.G. Callan, J.A. Harvey, and A. Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B359 (1991), 611.MathSciNetGoogle Scholar
  60. 60.
    C.G. Callan, J.A. Harvey, and A. Strominger, Worldbrane actions for string solitons, Nucl. Phys. B367 (1991), 60.MathSciNetGoogle Scholar
  61. 61.
    M.J. Duff and J.X. Lu, Type II p-branes: the brane scan revisited, Nucl. Phys. B390 (1993), 276.MathSciNetzbMATHGoogle Scholar
  62. 62.
    R. Gueven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. 13276 (1992), 49.Google Scholar
  63. 63.
    J.T. Liu and R. Minasian, Black holes and membranes in AdS7, Phys. Lett. B457 (1999), 39, hep-th/9903269.Google Scholar
  64. 64.
    G.W. Gibbons and P.K. Townsend, Vacuum interpolation in super-gravity via super p-branes, Phys. Rev. Lett. 71 (1993), 3754.MathSciNetADSzbMATHCrossRefGoogle Scholar
  65. 65.
    M.J. Duff, G.W. Gibbons, and P.K. Townsend, Macroscopic super-strings as interpolating solitons, Phys. Lett. B. 332 (1994), 321.MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    G.W. Gibbons, G.T. Horowitz, and P.K. Townsend, Higher-dimensional resolution of dilatonic black hole singularities, Class. Quant. Gray. 12 (1995), 297.MathSciNetADSzbMATHCrossRefGoogle Scholar
  67. 67.
    M.J. Duff, H. Lü, C.N. Pope, and E. Sezgin, Supermembranes with fewer supersymmetries,Phys. Lett. B371 (1996), 206, hepth/9511162.Google Scholar
  68. 68.
    L. Castellani, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, and M. Trigiante, G/H M-branes and AdS P+ 2 geometries,Nucl. Phys. B527 (1998) 142, hep-th/9803039.Google Scholar
  69. 69.
    M.A. Awada, M.J. Duff, and C.N. Pope, N = 8 supergravity breaks down to N = 1, Phys. Rev. Lett. 50 (1983), 294.MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    M.J. Duff, B.E.W. Nilsson, and C.N. Pope, Spontaneous supersymmetry breaking via the squashed seven sphere, Phys. Rev. Lett. 50 (1983), 2043.Google Scholar
  71. 71.
    K. Yano and T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. Math. 69 (1959), 451.zbMATHCrossRefGoogle Scholar
  72. 72.
    M.J. Duff and J.X. Lu, Black and super p-branes in diverse dimensions,Nucl. Phys. B416 (1994), 301.’Google Scholar
  73. 73.
    M.J. Duff and J. Rahmfeld, Bound states of black holes and other p-braves, Nucl. Phys. B481 (1996), 332.MathSciNetGoogle Scholar
  74. 74.
    N. Khviengia, Z. Khviengia, H. Lü, and C.N. Pope, Interecting Mbranes and bound states, Phys. Lett. B388 (1996), 21.CrossRefGoogle Scholar
  75. 75.
    M.J. Duff, S. Ferrara, R. Khuri, and J. Rahmfeld, Supersymmetry and dual string solitons, Phys. Lett. B356 (1995), 479.MathSciNetCrossRefGoogle Scholar
  76. 76.
    M.J. Duff and J. Rahmfeld, Massive string states as extreme black holes, Phys. Lett. B345 (1995), 441.MathSciNetCrossRefGoogle Scholar
  77. 77.
    D.Z. Freedman and G.W.Gibbons, Electrovac ground state in gauged SU(2) x SU(2) supergravity, Nucl. Phys. B233, (1984), 24.Google Scholar
  78. 78.
    P. Claus, R. Kallosh, J. Kumar, P.K. Townsend, and A. Van Proeyen, Supergravity and the large N limit of theories with sixteen supercharges, JHEP 9806 (1998), 004, hep-th/9801206.Google Scholar
  79. 79.
    G. Dall’Agata, D. Fabbri, C. Fraser, P. Fré, P. Termonia, and M. Tri-giante, The OSp(418) singleton action from the supermembrane,Nucl. Phys. B542 (1999), 157, hep-th/9807115.Google Scholar
  80. 80.
    A.A. Tseytlin, Extreme dyonic black holes in string theory,Mod. Phys. Lett. All (1996), 689, hep-th/9601177.Google Scholar
  81. 81.
    M. Cvetic and A.A. Tseytlin, General class of BPS saturated black holes as exact superstring solutions,Phys. Lett. B366 (1996), 95, hep-th/9510097.Google Scholar
  82. 82.
    M. Cvetic and A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes,Phys. Rev. D53 (1996), 5619, hep-th/9512031Google Scholar
  83. 83.
    M.J. Duff, H. Lü, and C.N. Pope, Supersymmetry without supersym-metry,Phys. Lett. B409 (1997), 136, hep-th/9704186.Google Scholar
  84. 84.
    S. Kachru and E. Silverstein, 4d conformal field theories and strings on orbifolds,Phys. Rev. Lett. 80 (1998), 4855, hep-th/9802183.Google Scholar
  85. 85.
    M.J. Duff, B.E.W. Nilsson, and C.N. Pope, Compactification of D 11 supergravity on K3 x T3, Phys. Lett. B129 (1983), 39.MathSciNetCrossRefGoogle Scholar
  86. 86.
    M.J. Duff, H. Lü, and C.N. Pope, AdS5 xs5 untwisted,Nucl. Phys. B532 (1998), 181, hep-th/9803061.Google Scholar
  87. 87.
    M.J. Duff, H. Lü, and C.N. Pope, AdS3 xS3 (un)twisted and squashed,Nucl.,Phys. B544 (1999), 145, hep-th/9807173.Google Scholar
  88. 88.
    E. Halyo, Supergravity on AdS5i 4 xHopf fibrations and conformal field theories,Mod. Phys. Lett. A15 (2000) 397, hep-th/9803193.Google Scholar
  89. 89.
    D.N. Page and C.N. Pope, Which compactifications of D = 11 super gravity are stable?, Phys. Lett. B144 (1984), 346.MathSciNetCrossRefGoogle Scholar
  90. 90.
    Y. Oz and J. Terning, Orbifolds of AdS 5 x S 5 and 4-D conformal field theories,Nucl. Phys. B532 (1998) 163, hep-th/9803167.Google Scholar
  91. 91.
    L. Romans, New compactifications of chiral N = 2, d = 10 supergrav-ity, Phys. Lett. B153 (1985), 392.MathSciNetCrossRefGoogle Scholar
  92. 92.
    I. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity,Nucl. Phys. B536 (1998) 199, hep-th/9807080.Google Scholar
  93. 93.
    L.J. Romans, Gauged N = 4 supergravities in five dimensions and their magnetovac backgrounds, Nucl. Phys. B267 (1986), 443.Google Scholar
  94. 94.
    M.J. Duff, P. Howe, T. Inami, and K.S. Stelle, Superstrings in D = 10 from supermembranes in D = 11, Phys. Lett. B191 (1987), 70.MathSciNetCrossRefGoogle Scholar
  95. 95.
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B347 (1990), 394.MathSciNetzbMATHGoogle Scholar
  96. 96.
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B438 (1995), 109.MathSciNetzbMATHGoogle Scholar
  97. 97.
    P.K. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B350 (1995), 184.MathSciNetCrossRefGoogle Scholar
  98. 98.
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B443 (1995), 85.MathSciNetzbMATHGoogle Scholar
  99. 99.
    M.J. Duff, J.T. Liu, and R. Minasian, Eleven-dimensional origin of string/string duality: A one loop test, Nucl. Phys. B452 (1995), 261.MathSciNetzbMATHGoogle Scholar
  100. 100.
    K. Becker, M. Becker, and A. Strominger, Fivebranes, membranes and nonperturbative string theory, Nucl. Phys. B456 (1995), 130.zbMATHGoogle Scholar
  101. 101.
    J.H. Schwarz, The power of M-theory, Phys. Lett. B360 (1995), 13.CrossRefGoogle Scholar
  102. 102.
    P. Horava and E. Witten, Heterotic and Type I string dynamics from eleven dimensions, Nucl. Phys. B460 (1996), 506.MathSciNetzbMATHGoogle Scholar
  103. 103.
    P. Townsend, D-Branes From M-Branes,Phys. Lett. B373 (1996)Google Scholar
  104. 104.
    O. Aharony, J. Sonnenschein, and S. Yankielowicz, _ Interactions of strings and D-branes from M-theory, Nucl. Phys. B474 (1996), 309.MathSciNetzbMATHGoogle Scholar
  105. 105.
    T. Banks, W. Fischler, S.H. Shenker, and L. Susskind, M-theory as a matrix model: a conjecture, Phys. Rev. D55 (1997), 5112.MathSciNetGoogle Scholar
  106. 106.
    R. Slansky, Group theory for unified model building, Phys. Rep. 79 (1981), 1.MathSciNetCrossRefGoogle Scholar
  107. 107.
    B.E.W. Nilsson and C.N. Pope, Hopf libration of D = 11 supergravity, Class. Quant. Gray. 1 (1984), 499.MathSciNetADSCrossRefGoogle Scholar
  108. 108.
    E. Witten, Strong coupling and the cosmological constant, Modern Phys. Lett. A10 (1995), 2153.Google Scholar
  109. 109.
    M.J. Duff and C. Orzalesi, The cosmological constant in spontaneously compactified D = 11 supergravity, Phys. Lett. B122 (1983), 37.MathSciNetCrossRefGoogle Scholar
  110. 110.
    J. Maldacena, The large N limit of superconformal field theories and supergravity,Int. J. Theor. Phys. 38 (1999), 1113, hep-th/9711200.Google Scholar
  111. 111.
    J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995), 4724MathSciNetADSzbMATHCrossRefGoogle Scholar
  112. 112.
    E. Witten, Bound states of, strings and p-branes,Nucl. Phys. B460 (1996), 335, hep-th/9510135.Google Scholar
  113. 113.
    S.S. Gubser, I.R. Klebanov, and A. W. Peet, Entropy and temperature of black 3-branes,Phys. Rev. D54 (1996), 3915, hep-th/9602135.Google Scholar
  114. 114.
    I.R. Klebanov, World volume approach to absorption by nondilatonic branes,Nucl. Phys. B496 (1997), 231, hep-th/9702076.Google Scholar
  115. 115.
    S.S. Gubser, I.R. Klebanov, and A.A. Tseytlin, String theory and classical absorption by three-branes,Nucl. Phys. B499 (1997), 217, hep-th/9703040.Google Scholar
  116. 116.
    S.S. Gubser and LR. Klebanov, Absorption by branes and Schwinger terms in the world volume theory,Phys. Lett. B413 (1997), 41, hepth/9708005.Google Scholar
  117. 117.
    N. Itzhak, J.M. Maldacena, J. Sonnenschein, and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges,Phys. Rev. D58 (1998), 046004, hep-th/9802042.Google Scholar
  118. 118.
    S. Ferrara and C. Fronsdal, Conformal Maxwell theory as a singleton field theory on AdS5, IIB three-branes and duality,Class. Quant. Gray. 15 (1998), 2153, hep-th/9712239.Google Scholar
  119. 119.
    R. Kallosh, J. Kumar, and A. Rajaraman, Special conformal symmetry of worldvolumé actions,Phys. Rev. D57 (1998), 6452, hepth/9712073.Google Scholar
  120. 120.
    H.J. Boonstra, B. Peters, and K. Skenderis, Branes and anti-de Sitter space-time,Fortsch. Phys. 47 (1999), 109, hep-th/9801076.Google Scholar
  121. 121.
    M. Günaydin and D. Minic, Singletons, doubletons and M-theory,Nucl. Phys. B523 (1998), 145, hep-th/9802047.Google Scholar
  122. 122.
    S.S. Gubser, I.R. Klebanov, and A.M. Polyakov, Gauge theory corre-lators from noncritical string theory,Phys. Lett. B428 (1998), 105, hep-th/9802109.Google Scholar
  123. 123.
    G.T. Horowitz and H. Ooguri, Spectrum of large N gauge theory from supergravity,Phys. Rev. Lett. 80 (1998) 4116, hep-th/9802116.Google Scholar
  124. 124.
    E. Witten, Anti-de Sitter space and holography,Adv. Theor. Math. Phys. 2 (1998), 253, hep-th/9802150.Google Scholar
  125. 125.
    M. Berkooz, A supergravity dual of a (1, 0) field theory in six dimensions,Phys. Lett. B437 (1998), 315, hep-th/9802195.Google Scholar
  126. 126.
    S. Ferrara, C. Fronsdal, and A. Zaffaroni, On N = 8 supergravity on AdS 5 and N = 4 superconformal Yang—Mills theory,Nucl. Phys. B532 (1998), 153, hep-th/9802203.Google Scholar
  127. 127. S.-J. Rey and J. Lee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, hep-th/9803001.Google Scholar
  128. 128.
    J. Maldacena, Wilson loops in large N field theories,Phys. Rev. Lett. 80 (1998), 4859, hep-th/9803002.Google Scholar
  129. 129.
    A. Lawrence, N. Nekrasov, and C. Vafa, On conformal field theories in four dimensions,Nucl. Phys. B533 (1998), 199, hep-th/9803015.Google Scholar
  130. 130.
    G. ‘t Hooft, Dimensional reduction in quantum gravity,gr-qc/9310026.Google Scholar
  131. 131.
    L. Susskind, The world as a hologram,J. Math. Phys. 36 (1995), 6377, hep-th/9409089.Google Scholar
  132. 132.
    S.W. Hawking and C.N. Pope, Generalised spin structures in quantum gravity, Phys. Lett. B73 (1978), 42.MathSciNetCrossRefGoogle Scholar
  133. 133.
    C.N. Pope, Eigenfunctions and spine structures in CP 2, Phys. Lett. B97 (1980), 417.MathSciNetCrossRefGoogle Scholar
  134. 134.
    M.J. Duff, H. Lü, and C.N. Pope, Heterotic phase transitions and singularities of the gauge dyonic string,hep-th/9603037.Google Scholar
  135. 135.
    M.J. Duff, J.T. Liu, H. Lü, and C.N. Pope, Gauge dyonic strings and their global limit,Nucl. Phys. B529 (1998) 137, hep-th/9711089.Google Scholar
  136. 136.
    H.J. Boonstra, B. Peeters, and K. Skenderis, Duality and asymptotic geometries,Phys. Lett. B411 (1997), 59, hep-th/9706192.Google Scholar
  137. 137.
    H.J. Boonstra, B. Peeters, and K. Skenderis, Brane intersections, anti-de Sitter spacetimes and dual superconformal theories,Nucl.Phys. B533 (1998), 127, hep-th/9803231.Google Scholar
  138. 138.
    G.T. Horowitz, J. Maldacena, and A. Strominger, Nonextremal black hole microstates and U duality,Phys. Lett. B383 (1996), 151, hepth/9603109.Google Scholar
  139. 139.
    G.T. Horowitz and A. Strominger, Counting states of near extremal black holes,Phys. Rev. Lett. 77 (1996), 2368, hep-th/9602051.Google Scholar
  140. 140.
    N. Seiberg and E. Witten, The DI/D5 system and singular CFT,JHEP 9904 (1999), 017, hep-th/9903224.Google Scholar
  141. 141.
    J. Maldacena, J. Michelson, and A. Strominger, Anti-de Sitter fragmentation,JHEP 9902 (1999), 011, hep-th/9812073.Google Scholar
  142. 142.
    J. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle,JHEP 9812 (1998) 005, hep-th/9804085.Google Scholar
  143. 143.
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B383 (1992), 395; Black holes in cosmological Einstein-Maxwell theory, in Proceedings of the 1992 Trieste summer school “High Energy Physics and Cosmology”, eds. E. Gava, K.S. Narain, S. Randjbar-Daemi, E Sezgin, and Q. Shafi, World Scientific, Singapore, 1993, 416.Google Scholar
  144. 144.
    K. Behrndt, A.H. Chamseddine, and W.A. Sabra, BPS black holes in N’= 2 five-dimensional AdS supergravity,Phys. Lett. B442 (1998), 97, hep-th/9807187.Google Scholar
  145. 145.
    D. Birmingham, Topological black holes in anti-de Sitter space,Class. Quant. Gray. 16 (1999), 1197, hep-th/9808032.Google Scholar
  146. 146.
    M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes,Nucl Phys. B545 (1999), 434, hep-th/9808097.Google Scholar
  147. 147.
    D. Klemm, BPS black holes in gauged N = 4, D = 4 supergravity,Nucl Phys. B545 (1999) 461, hep-th/9810090.Google Scholar
  148. 148.
    K. Behrndt, M. Cvetic, and W.A. Sabra, Non-extreme black holes five-dimensional N = 2 AdS supergravity,Nucl. Phys. B553 (1999) 317, hep-th/9810227.Google Scholar
  149. 149.
    M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity,Nucl. Phys. B554 (1999), 237, hep-th/9901149.Google Scholar
  150. 150.
    A. Chamblin, R. Emparan, C.V. Johnson, and R.C. Myers, Charged AdS black holes and catastrophic holography,Phys. Rev. D60 (1999), 064018, hep-th/9902170.Google Scholar
  151. 151.
    M. Cvetic and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories,JHEP 9904 (1999) 024, hep-th/9902195.Google Scholar
  152. 152.
    M. Cvetic and S.S. Gubser, Thermodynamic stability and phases of general spinning branes,JHEP 9907 (1999), 010, hep-th/9903132.Google Scholar
  153. 153.
    W. Sabra, Anti-de Sitter black holes in N = 2 gauged supergravity,Phys. Lett. B458 (1999) 36, hep-th/9903143.Google Scholar
  154. 154.
    M.M. Caldarelli and D. Klemm, M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories,Nucl. Phys. B555 (1999), 157; hep-th/9903078.Google Scholar
  155. 155.
    E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,Adv. Theor. Math. Phys. 2 (1998), 505, hep-th/9803131.Google Scholar
  156. 156.
    B. de Wit and H. Nicolai, N = 8 supergravity with local SO(8) x SU(8) invariance, Phys. Lett. B108 (1982), 285.CrossRefGoogle Scholar
  157. 157.
    M.J. Duff, Anti-de Sitter space, branes, singletons, superconformal field theories and all that,Int. J. Mod. Phys. A14 (1999), 815, hepth/9808100.Google Scholar
  158. 158.
    M.J. Duff and C.N. Pope, Consistent truncations in Kaluza-Klein theories, Nucl. Phys. B255 (1985), 355.MathSciNetzbMATHGoogle Scholar
  159. 159.
    C.N. Pope, Consistency of truncations in Kaluza-Klein,published in the Proceedings of the 1984 Santa Fe meeting.Google Scholar
  160. 160.
    B. de Wit, H. Nicolai, and N.P. Warner, The embedding of gauged N = 8 supergravity into D = 11 supergravity, Nucl. Phys. B255 (1985), 29.Google Scholar
  161. 161.
    M.J. Duff, B.E.W. Nilsson, C.N. Pope, and N. Warner, On the consistency of the Kaluza-Klein ansatz, Phys. Lett. B149 (1984), 90.MathSciNetCrossRefGoogle Scholar
  162. 162.
    B. de Wit and H. Nicolai, The consistency of the S 7 truncation in D = 11 supergravity, Nucl. Phys. B281 (1987), 211.Google Scholar
  163. 163.
    M.J. Duff, J.T. Liu, and J. Rahmfeld, Four-dimensional string-stringstring triality,Nucl. Phys. B459 (1996), 125, hep-th/9508094.Google Scholar
  164. 164.
    M. Cvetic and D. Youm, Dyonic BPS saturated black holes of heterotic string on a six torus,Phys. Rev. D53 (1996), 584, hep-th/9507090.Google Scholar
  165. 165.
    H. Lü and C.N. Pope, p-brane solitons in maximal supergravities,Nucl. Phys. B465 (1996), 127, hep-th/9512012.Google Scholar
  166. 166.
    R.R. Khuri and T. Ortin, Supersymmetric black holes in N = 8 su-pérgravity; Nucl. Phys. B467 (1996), 355.MathSciNetzbMATHGoogle Scholar
  167. 167.
    M. Cvetic and A. A. Tseytlin, General class of BPS saturated dyonic black holes as exact superstring solutions,Phys. Lett. B366 (1996), 95, hep-th/9510097.Google Scholar
  168. 168.
    A.A. Tseytlin, Harmonic superpositions of M-branes,Nucl. Phys. B475 (1996), 149, hep-th/9604035.Google Scholar
  169. 169.
    M. Cvetic and D. Youm, Near BPS saturated rotating electrically charged black holes as string states,Nucl. Phys. B477 (1996), 449, hep-th/9605051.Google Scholar
  170. 170.
    M. Cvetic and D. Youm, Rotating intersecting M-branes,Nucl. Phys. B499 (1997), 253, hep-th/9612229.Google Scholar
  171. 171.
    S. Gubser, Thermodynamics of spinning D3-branes,Nucl. Phys. B551 (1999), 667, hep-th/9810225.Google Scholar
  172. 172.
    C. Csaki, Y. Oz, J. Russo, and J. Terning, Large N QCD from rotating branes,Phys. Rev. D59 (1999), 065012, hep-th/9810186.Google Scholar
  173. 173.
    P. Kraus, F. Larsen, and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes,Adv. Theor. Math. Phys. 3 (1999), 13, hep-th/9901056.Google Scholar
  174. 174.
    R. Cai and K. Soh, Critical behavior in the rotating D-branes,Mod. Phys. Lett. A14 (1999), 1895, hep-th/9812121.Google Scholar
  175. 175.
    P. Kraus, F. Larsen, and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes,JHEP 9903 (1999), 003, hep-th/9811120.Google Scholar
  176. 176.
    J.G. Russo and K. Sfetsos, Rotating D3-branes and QCD in three dimensions,Adv. Theor. Math. Phys. 3 (1999), 131, hep-th/9901056.Google Scholar
  177. 177.
    C. Csaki, J. Russo, K. Sfetsos, and J. Terning, Supergravity models for 3 + 1 dimensional QCD,Phys. Rev. D60 (1999), 044001, hepth/9902067.Google Scholar
  178. 178.
    K. Sfetsos, Rotating NS5-brane solution and its exact string theoretical description,Fortsch. Phys. 48 (2000), 199, hep-th/9903201.Google Scholar
  179. 179.
    K.S. Thorne, R.H. Price and D.A. Macdonald (eds.), Black holes: the membrane paradigm, Yale Univ. Press, New Haven, CT, 1986.Google Scholar
  180. 180.
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986), 304.ADSzbMATHCrossRefGoogle Scholar
  181. 181.
    M. Cvetic, H. Lü, and C.N. Pope, Spacetimes of boosted p-branes, and CFT in infinite momentum frame,Nucl.Phys. B545 (1999), 309, hep-th/9810123.Google Scholar
  182. 182.
    B.E.W. Nilsson, On the embedding of d = 4, N = 8 gauged supergravity in d = 11, N = 1 supergravity, Phys. Lett. B155 (1985), 54.MathSciNetCrossRefGoogle Scholar
  183. 183.
    C.N. Pope, The embedding of the Einstein-Yang—Mills equations in D = 11 supergravity, Class. Quant. Gray. 2 (1985), L77.MathSciNetADSzbMATHCrossRefGoogle Scholar
  184. 184.
    M. Pernici, K. Pilch, and P. van Nieuwenhuizen, Noncompact gaugings and critical points of maximal supergravity in seven dimensions, Nucl. Phys. B249 (1985), 381.MathSciNetGoogle Scholar
  185. 185.
    H. Lü, C.N. Pope, E. Sezgin, and K.S. Stelle, Dilatonic p-brane soli-tons,Phys. Lett. B371 (1996), 46, hep-th/9511203.Google Scholar
  186. 186.
    E. Cremmer and B. Julia, The N = 8 supergravity theory. I. The Lagrangian, Phys. Lett. B80 (1978), 48.CrossRefGoogle Scholar
  187. 187.
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B159 (1979), 141.MathSciNetGoogle Scholar
  188. 188.
    E. Cremmer, B. Julia, H. Lü, and C.N. Pope, Dualisation of dualities,Nucl. Phys. B523 (1998), 73, hep-th/9710119.Google Scholar
  189. 189.
    M.J. Duff and J. Rahmfeld, Bound states of black holes and other p-branes, Nucl. Phys. B481 (1996), 332.MathSciNetGoogle Scholar
  190. 190.
    P.C. Aichelburg and F. Embacher, Exact superpartners of N = 2 supergravity solitons, Phys. Rev. D34 (1986), 3006.MathSciNetGoogle Scholar
  191. 191.
    M.J. Duff, J.T. Liu, and J. Rahmfeld, Dipole moments of black holes and string states, Nucl. Phys. B494 (1997), 161.MathSciNetzbMATHGoogle Scholar
  192. 192.
    D.Z. Freedman and H. Nicolai, Multiplet shortening in OSp(N, 4), Nucl. Phys. B237 (1984), 342.zbMATHGoogle Scholar
  193. 193.
    M.J. Duff and J. Rahmfeld, Massive string states as extreme black holes, Phys. Lett. B345 (1995), 441.MathSciNetCrossRefGoogle Scholar
  194. 194.
    M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes,Nucl. Phys. B545 (1999), 434, hep-th/9808097.Google Scholar
  195. 195.
    J. Rahmfeld, Extremal black holes as bound states, Phys. Lett. B372 (1996), 198.MathSciNetCrossRefGoogle Scholar
  196. 196.
    C.R., Graham and R. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), 186.zbMATHGoogle Scholar
  197. 197.
    E. Cremmer, Symmetries in extended supergravity, in Proceedings of the 1981 Trieste conference “Supergravity 81, ” eds. S. Ferarra and J.G. Taylor, Cambridge Univ. Press, Cambridge-New York, 1982.Google Scholar
  198. 198.
    A. Salam and E. Sezgin, Supergravities in diverse dimensions, World Scientific, Singapore, 1989.Google Scholar
  199. 199.
    E. Witten, Fermion quantum numbers in Kaluza-Klein theory, in Proceedings of the “Shelter Island II” conference (1983), eds. R. Jackiw, N.N. Khuri, S. Weinberg, and E. Witten M.I.T. Press, Cambridge, MA-London, 1985, 227.Google Scholar
  200. 200.
    M.J. Duff, B.E.W. Nilsson; and C.N. Pope, Kalüza Klein supergravity, Phys. Rep. 130 (1986), 1.MathSciNetCrossRefGoogle Scholar
  201. 201.
    M.J. Duff, Kaluza-Klein theory in perspective,in the Proceedings of the Nobel Symposium “Oskar Klein Centenary,” Stockholm, September 1994, ed. U. Lindstrom, World Scientific, Singapore 1995, hep-` th/9410046.Google Scholar
  202. 202.
    P.K. Townsend, M(embrané) theory on T 9,in the “Strings 97” Proceedings, eds. F.A. Bais, E.A. Bergshoeff, B. de Wit, R. Dijkgraaf, A.N. Schellekens, E.P. Verlinde, and H.L. Verlinde, Nucl. Phys. B68 Proc. Suppl. (1998), 11, hep-th/9708054.Google Scholar
  203. 203.
    M. Cvetic, M.J. Duff, P. Hoxha, J.T. Liu, H. Lu, J.X. Lü, R. Martinez- Acosta, C.N. Pope, H.Sati, and T.A. Tran, Embedding AdS black holes in ten and eleven dimensions,Nucl. Phys. B558 (1999), 96, hepth/9903214.Google Scholar
  204. 204.
    V.A. Rubakov and M.E. Shaposhnikov, Do we live inside a domain wall?, Phys. Lett. B125 (1983), 136.CrossRefGoogle Scholar
  205. 205.
    G.W. Gibbons and D.L. Wiltshire, Space-time as a membrane in higher dimensions, Nucl. Phys. B287 (1987), 717.MathSciNetGoogle Scholar
  206. 206.
    G.T. Horowitz and A. Strominger, Black strings and p-branes, Nucl. Phys. B360 (1991), 197.MathSciNetGoogle Scholar
  207. 207.
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B246 (1990), 377.CrossRefGoogle Scholar
  208. 208.
    E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B471 (1996), 135.MathSciNetzbMATHGoogle Scholar
  209. 209.
    J. Lykken, Weak scale superstrings, Phys. Rev. D54 (1996), 3693.MathSciNetGoogle Scholar
  210. 210.
    N. Arkani-Hamed, S. Dimopoulos, and G, Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B429 (1998), 263.CrossRefGoogle Scholar
  211. 211.
    K.R. Dienes, E. Dudas, and T. Gherghetta, Extra space-time dimensions and unification, Phys. Lett. B436 (1998), 55.MathSciNetCrossRefGoogle Scholar
  212. 212.
    E. Witten, Search for a realistic Kaluza-Klein theory, Nucl. Phys. B186 (1981), 412 428.MathSciNetGoogle Scholar
  213. 213.
    L. Castellani, R. D’Auria, and P. Fré, Supergravity and superstrings: a geometric perspective (in 3 volumes), World Scientific Press, Singa pore, 1991.Google Scholar
  214. 214.
    K.S. Stelle, An introduction to p-branes, In Seoul/Sokcho 1997 “Dualities in Gauge and String Theories,” eds. Y.M. Cho and S.Nam, World Scientific, Singapore, 1998, 39.Google Scholar
  215. 215.
    S.P. de Alwis, A note on brane tension and M-theory,Phys.Lett. B388 (1996) 291, hep-th/9607011.Google Scholar
  216. 216.
    O. Aharony, S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Large N field theories string theory and gravity, Phys. Rep. 323 (2000), 183, hep-th/9905111.Google Scholar
  217. 217.
    S.K. Han and I.G. Koh, N = 4 supers remaining in Kaluza- Klein monopole background in D = 11 supergravity, Phys. Rev. D31 (1985), 2503.Google Scholar
  218. 218.
    H. Nastase, D. Vaman, and P. van Nieuwenhuizen, Consistent nonlinear KK reduction of 11-D supergravity on AdS 7 x54 and selfduality in odd dimensions,Phys. Lett. B469 (1999) 96–102, hep-th/9905075.Google Scholar
  219. 219.
    H. Nastase, D. Vaman, and P. van Nieuwenhuizen, Consistency of the AdS7 xS 4 reduction and the origin of selfduality in odd dimensions,Nucl. Phys. B581 (2000), 179–239, hep-th/9911238.Google Scholar
  220. 220.
    H. Lü and C.N. Pope, Exact embedding of N = 1, D = 7 gauged supergravity in D = 11, Phys. Lett. B467 (1999), 67, hep-th/9906168.Google Scholar
  221. 221.
    H. Lü, C.N. Pope, and T.A. Tran, Five-dimensional N = 4, SU(2) x U(1) gauged supergravity from type IIB,Phys. Lett. B475 (2000), 261, hep-th/9909203.Google Scholar
  222. 222.
    M. Cvetic, H. Lü, and C.N. Pope, Four-dimensional N = 4 SO(4) gauged supergravity from D = 11,Nucl. Phys. B574 (2000), 761, hep-th/9910252.Google Scholar
  223. 223.
    S.W. Hawking and H.S. Rea11, Charged and rotating AdS black holes and their CFT duals,Phys. Rev. D61 (2000) 024014, hep-th/9908109.Google Scholar
  224. 224.
    M. Günaydin and S. Takemae, Unitary supermultiplets of OSp(8* 4) and their AdS7 /CFT 6 duality, Nucl. Phys. B578 (2000), 405 448, hep-th/9910110.Google Scholar
  225. 225.
    P.S. Howe and E. Sezgin, Superbranes,Phys. Lett. B390 (1997), 133= 142, hep-th/9607227.Google Scholar
  226. 226.
    E. Sezgin and P. Sundell, Aspects of the M5-brane, hep-th/9902171.Google Scholar
  227. 227.
    P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane, Phys. Lett. 399B (1997), 49.MathSciNetCrossRefGoogle Scholar
  228. 228.
    P.S. Howe and E. Sezgin, D = 11, p 5, Phys. Lett. B394 (1997), 62.MathSciNetCrossRefGoogle Scholar
  229. 229.
    I. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. Sorokin, and M. Tonin, Covariant action for the superfivebrane of M-theory, Phys. Rev. Lett. 78 (1997), 4332.MathSciNetADSzbMATHCrossRefGoogle Scholar
  230. 230.
    I. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. Soroki, and M. Tonin, On the equivalence of different formulations of the M theory five-brane,Phys. Lett. B408 (1997), 135, hep-th/9703127.Google Scholar
  231. 231.
    E. Bergshoeff and P. K. Townsend, Super D-branes, Nucl. Phys. B490 (1997), 145.MathSciNetzbMATHGoogle Scholar
  232. 232.
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension,Phys. Rev. Lett. 83 (1999), 3370, hep-ph/9905221.Google Scholar
  233. 233.
    L. Randall and R. Sundrum, An alternative to compactification,Phys. Rev. Lett. 83 (1999), 4690, hep-th/9906064.Google Scholar
  234. 234.
    J.L. Petersen, Introduction to the Maldacena conjecture on AdS/CFT,Int.’ J. Mod. Phys. A14 (1999), 3597, hep-th/9902131.Google Scholar
  235. 235.
    E. Witten and S.T. Yau, Connectedness of the boundary in the AdS/CFT correspondence,hep-th/9910245.Google Scholar
  236. 236.
    T. Banks, M theory and cosmology,hep-th/9911067Google Scholar
  237. 237.
    M.J. Duff, The world in eleven dimensions: supergravity, supermembranes and M-theory, a reprint volume with commentaries, I.O.P. Publishing, Bristol, 1999.Google Scholar
  238. 238.
    P. van Nieuwenhuizen, Supergravity,Phys. Rep. 68 (1981), 189.Google Scholar
  239. 239.
    C. Ahn and S-J. Rey, Three-dimensional CFTs and RG flow from squashing M2-brane horizon,Nucl. Phys. B565 (2000), 210–214, hepth/9908110Google Scholar
  240. 240.
    K. Landsteiner and E. Lopez, The thermodynamic potentials of Kerr- AdS black holes and their CFT duals,JHEP 9912 (1999) 020, hepth/9911124.Google Scholar
  241. 241.
    S. Deser and D. Seminara, Counterterms/M-theory corrections to D = 11 supergravity, Phys. Rev. Lett. 82 (1999), 2435.Google Scholar
  242. 242.
    T. Harmark and N.A. Obers, Thermodynamics of spinning branes and their dual field theories,JHEP 0001 (2000) 008, hep-th/9910036.Google Scholar
  243. 243.
    T. Harmark and N.A. Obers, Phase structure of noncommutative field spinning branes and their dual field theories,JHEP 0003 (2000) 024, hep-th/9911169.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • M. J. Duff

There are no affiliations available

Personalised recommendations