Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems

  • Eric D’Hoker
  • D. H. Phong
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

We present a series of four self-contained lectures on the following topics;
  1. (I)

    An introduction to 4-dimensional 1 ≤ N ≤ 4 supersymmetric Yang-Mills theory, including particle and field contents, N = 1 and N = 2 superfield methods and the construction of general invariant Lagrangians;

     
  2. (II)

    A review of holomorphicity and duality in N = 2 super-Yang-Mills, of Seiberg-Witten theory and its formulation in terms of Riemann surfaces;

     
  3. (III)

    An introduction to mechanical Hamiltonian integrable systems; such as the Toda and Calogero-Moser systems associated with general Lie algebras; a review of the recently constructed Lax pairs with spectral parameter for twisted and untwisted elliptic Calogero-Moser systems;

     
  4. (IV)

    A review of recent solutions of the Seiberg-Witten theory for general gauge algebra and adjoint hypermultiplet content in terms of the elliptic Calogero-Moser integrable systems.

     

Keywords

Gauge Theory Gauge Group Spectral Curve Supersymmetric Gauge Theory Gauge Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.A. Golfand and E.P. Lichturan, “Extension of the algebra of Poincare group generators and violation of P invariance”, JETP Lett. 13 (1971), 323–326;ADSGoogle Scholar
  2. J.-L. Gervais and B. Sakita, “Field theory interpretation of supergauges in dual models”, Nucl. Phys. B34 (1971), 632–639;MathSciNetADSCrossRefGoogle Scholar
  3. D.V. Volkov and V.P. Akulov, “Possible universal neutrino interaction”, JETP Lett. 16 (1972), 438–440;ADSGoogle Scholar
  4. J. Wess and B Zumino, “Supergauge transformations in four dimensions,” Nucl. Phys. B70 (1974), 39–50.MathSciNetADSCrossRefGoogle Scholar
  5. 2.
    J. Wess and J. Bagger, Supersymmetry’ and Supergravity, Princeton Univ. Press, 1983;Google Scholar
  6. P. West, Introduction to Supersymmetry and Super-gravity, World Scientific, 1990;Google Scholar
  7. S.J. Gates, M.T. Grisaru, M. Rocek, and W. Siegel, Superspace, Benjamin/Cummings Publ. Comp., 1983.Google Scholar
  8. 3.
    F. Wilczek, “QCD in extreme conditions,” in this book.Google Scholar
  9. 4.
    M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, 1995;Google Scholar
  10. T.P. Cheng and L.F. Li, Gauge Theory of Elementary Particle Physics, Oxford Univ. Press, 1984;Google Scholar
  11. S. Weinberg, The Quantum Theory of Fields, Cambridge Univ. Press, 1996.Google Scholar
  12. 5.
    WWW Reviews of Particle Physics, http://www-pdg.1b1.gov/1999.
  13. 6.
    K.S. Babu, J.C. Pati, and F. Wilczek, “Fermion masses, neutrino oscillations and proton decay in the light of SuperKamiokande,” Nucl. Phys. B566 (2000), 33 91, hep-ph/9812538.Google Scholar
  14. 7.
    . C. Montonen and D. Olive, “Magnetic monopoles as gauge particles? Phys. Lett. B72 (1977), 117–120;ADSGoogle Scholar
  15. P. Goddard, J. Nuyts, and D. Olive, “Gauge theories and magnetic charge,” Nucl. Phys. B125 (1977), 1–28.MathSciNetADSCrossRefGoogle Scholar
  16. 8.
    N. Seiberg and E. Witten, “Electro-magnetic duality, monopole con-densation, and confinement in .ÍV = 2 supersymmetric Yang-Mills theory,” Nucl. Phys. B426 (1994), 19–52, hep-th/9407087; “Monopoles, duality, and chiral symmetry breaking in. IV = 2 supersymmetric QCD,” Nucl. Phys. B431 (1994), 484 550, hep-th/9410167.Google Scholar
  17. 9.
    J. Polchinski, “String Theory,” Cambridge Univ. Press, 1998.Google Scholar
  18. 10.
    J. Maldacena, “The large N limit of superconformal theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998), 231–252, hepth/9711200;Google Scholar
  19. S.S. Gubser, I.R. Klebanov, and A.M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B428 (1998), 105–114, hep-th/9802109;Google Scholar
  20. E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998), 253 291, hep-th/9802150.Google Scholar
  21. 11.
    S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, “Three-point functions of chiral operators in D = 4, Ar = 4 SYM at large N,” Adv. Theor. Math. Phys. 2 (1998), 697–718, hep-th/9806074;Google Scholar
  22. E. D’Hoker, D.Z. Freedman, and W. Skiba, “Field theory tests for the correlators in the AdS/CFT correspondence,” Phys. Rev. D59(1999), 045008 , hep-th/9807098;Google Scholar
  23. K. Intriligator and W. Skiba, “Bonus symmetry and the operator product expansion of Af = 4 super-Yang—Mills,” Nucl. Phys. B559 (1999), 165–183, hep-th/9905020.Google Scholar
  24. 12.
    P. Howe and P. West, “Superconformal invariants and extended supersymmetry,” Phys. Lett. B400(1997), 307–314, hep-th/9611075;Google Scholar
  25. P.S. Howe, E. Sokatchev, and P. West, “3-point functions in N = 4 Yang-Mills,” Phys. Lett. B444(1998), 341–351, hep-th/9808162.Google Scholar
  26. 13.
    R. Grimm, M. Sohnius, and J. Wess, “Extended supersymmetry and gauge theories,” Nucl. Phys. B133 (1978), 275–284.MathSciNetADSCrossRefGoogle Scholar
  27. 14.
    A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained Ar = 2 matter, Yang—Mills and supergravity theories in harmonic superspace,” Class. Quant. Gray. 1 (1984), 469–498;ADSCrossRefGoogle Scholar
  28. G.G. Hartwell, P.S. Howe, (Npq) harmonic superspace,“ Int. J. Mod. Phys. A10 (1995), 3901–3919;MathSciNetADSGoogle Scholar
  29. P.S. Howe, “A superspace survey,” Class. Quant. Gray. 12 (1995), 1823–1880.MathSciNetADSMATHCrossRefGoogle Scholar
  30. 15.
    B.M. Zupnik, “The action of the supersymmetric AI = 2 gauge theory in harmonic superspace,” Phys. Lett. B183 (1987), 175–176; “Solution of the constraints of the supergauge theory in the harmonic SU(2)/U(1)-superspace,” Theor. Math. Phys. 69 (1986), 1101–1105.MathSciNetCrossRefGoogle Scholar
  31. 16.
    K.G. Wilson and J. Kogut, “The renormalization group and the epsilon expansion,” Phys. Rep. 12 (1974), 75–200 .Google Scholar
  32. 17.
    . A. Shifman and A.I. Vainshtein, “Solution of the anomaly puzzle in susy gauge theories and the Wilson operator expansion”, Nucl. Phys. B277 (1986), 456–486;ADSCrossRefGoogle Scholar
  33. A. Shifman and A.I. Vainshtein, “On holomorphic dependence and infrared effects in supersymmetric gauge theories”, Nucl. Phys. B359 (1991), 571–580;MathSciNetADSCrossRefGoogle Scholar
  34. D. Amati, K. Konishi, Y. Meurice, G.C. Rossi, and G. Veneziano, “Nonperturbative aspects in supersymmetric gauge theories,” Phys. Rep. 162 (1988), 169–248.MathSciNetADSCrossRefGoogle Scholar
  35. 18.
    N. Seiberg, “Naturalness versus supersymmetric nonrenormalization theorems,” Phys. Lett. B318 (1993), 469–475;MathSciNetADSGoogle Scholar
  36. N. Seiberg, “Exact results on the space of vacua of four-dimensional SUSY gauge theories,” Phys. Rev. D49 (1994), 6857–6863.MathSciNetGoogle Scholar
  37. 19.
    P.C. Argyres and M. Douglas, “New phenomena in SU(3) super-symmetric gauge theory,” Nucl. Phys. B448 (1995), 93–126, hepth/9505062.Google Scholar
  38. 20.
    G. Hooft, “Magnetic monopoles in unified gauge theories,” Nucl. Phys. B79 (1974), 276–284;ADSCrossRefGoogle Scholar
  39. A.M. Polyakov, “Particle spectrum in the quantum field theory,” JETP Lett. 20 (1974), 194–195.ADSGoogle Scholar
  40. 21.
    M.K. Prasad and C.M. Sommerfield, “Exact classical solution for the ‘t Hooft Monopole and the Julia Zee dyon,” Phys. Rev. Lett. 35 (1975), 760–762;Google Scholar
  41. E.B. Bogomolnyi, “The stability of classical solutions,” Sov. J. Nucl. Phys. 24 (1976), 449–454.MathSciNetGoogle Scholar
  42. 22.
    E. Witten, “Dyons of charge e8/27r,” Phys. Lett. B86 (1979), 283–287.ADSGoogle Scholar
  43. 23.
    E. Witten and D. Olive, “Supersymmetry algebras that include topological charges”, Phys. Lett. B78 (1978), 97–101.ADSGoogle Scholar
  44. 24.
    B. de Wit and A. Van Proeyen, “Potentials and symmetries of general gauged Ar = 2 supergravity-Yang-Mills models,” Nucl. Phys. B245 (1984), 89–117;ADSCrossRefGoogle Scholar
  45. S. Ferrara, “Calabi Yau moduli space, special geometry and mirror symmetry,” Mod. Phys. Lett. A6 (1991), 2175–2180;ADSGoogle Scholar
  46. A. Strominger, “Special geometry,” Comm Math. Phys. 133 (1990), 163–180.MathSciNetADSMATHCrossRefGoogle Scholar
  47. 25.
    A. Klemm, W. Lerche, S. Theisen, and S. Yankielowicz, “Simple singularities and Ar 2 supersymmetric gauge theories,” Phys. Lett. B344 (1995), 169–175, hep-th/9411048;Google Scholar
  48. P. Argyres and A. Faraggi, “The vacuum structure and spectrum of N =2 supersymmetric SU(N) gauge theory,” Phys. Rev. Lett. 73 (1995), 3931 3934, hepth/9411057;Google Scholar
  49. P. Argyres, M.R. Plesser, and A. Shapere, “The Coulomb phase of AT =2 supersymmetric QCD,” Phys. Rev. Lett. 75 (1995), 1699–1702, hep-th/9505100;Google Scholar
  50. M.R. Abolhasani, M. Alishahiha, and A.M. Ghezelbash, “The moduli space and monodromies of the N =2 supersymmetric Yang—Mills theory with any Lie gauge group,” Nucl. Phys. B480 (1996), 279–295, hep-th/9606043;Google Scholar
  51. M. Alishahiha, F. Ardalan, and F. Mansouri, “The moduli space of the N = 2 su persymmetric G2 Yang-Mills theory,” Phys. Lett. B381 (1996), 446–450, hep-th/9512005;Google Scholar
  52. A. Hanany and Y. Oz, “On the quantum moduli space of vacua of the Ar =2 supersymmetric SU(N) gauge theories,” Nucl. Phys. B452 (1995), 283–312, hep-th/9505075;Google Scholar
  53. A. Hanany, “On the quantum moduli space of vacua of Ar = 2 supersymmetric gauge theories,” Nucl. Phys. B466 (1996), 85–100, hep-th/9509176.Google Scholar
  54. 26.
    E. D’Hoker, I.M. Krichever, and D.H. Phong, “The effective prepotential for Ar =2 supersymmetric SU(N) gauge theories,” Nucl. Phys. B489 (1997), 179–210, hep-th/9609041.Google Scholar
  55. 27.
    E. D’Hoker, I.M. Krichever, and D.H. Phong, “The effective prepotential of Ar = 2 supersymmetric SO(Nc) and Sp(N) gauge theories,” Nucl. Phys. B489 (1997), 211–222, hep-th/9609145.Google Scholar
  56. 28.
    S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “One-instanton tests of a Seiberg Witten curve from M-theory: the antisymmetric representation of SU(N),” Nucl. Phys. B533 (1988), 275–302 , hep-th/9804105;Google Scholar
  57. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “Oneinstanton predictions of a Seiberg-Witten curve from M-theory: the symmetric representation of SU(N),” Int. J. Mod. Phys. A14 (1999), 301–321, hep-th/9804151;Google Scholar
  58. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “One-instanton predictions for nonhyperel-liptic curves derived from M-theory,” Nucl. Phys. B536 (1988), 245— 257, hep-th/9806144;Google Scholar
  59. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “One-instanton predictions of Seiberg-Witten curves for product groups,” Phys. Lett. B452 (1999), 260–264, hepth/9901124;Google Scholar
  60. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “Two antisymmetric hypermultiplets in Al 2 SU(N) gauge theory: ‘Seiberg—Witten curve and M-theory interpretation,” Nucl. Phys. B558 (1999), 41=62, hep-th/9904078; “Tests of M-theory from Al’ = 2 Seiberg—Witten theory,” hep-th/9911022.Google Scholar
  61. 29.
    I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “Oneinstanton predictions of Seiberg-Witten curves for product groups,” Phys. Lett. B452 (1999), 260–264, hep-th/9901124;Google Scholar
  62. U. Feichtinger, “The prepotential of Ar = 2 SU(2) x SU(2) supersymmetric Yang Mills theory with bifundamental matter,” Phys. Lett. B465 (1999), 155 162, hep-th/9908143.Google Scholar
  63. 30.
    A. Ceresole, R. D’Auria, and S. Ferrara, “On the geometry of moduli space of vacua in Al = 2 supersymmetric Yang—Mills theory,” Phys. Lett. B339 (1994), 71–76, hep-th/9408036;Google Scholar
  64. A. Klemm, W. Lerche, and S. Theisen, “Nonperturbative effective actions of, V = 2 super-symmetric gauge theories,” Int. J. Mod. Phys. All (1996), 1929–1973, hep-th/9505150;Google Scholar
  65. J. Isidro, A. Mukherjee, J. Nunes, and H. Schnitzer, “A new derivation of Picard-Fuchs equations for effective Al = 2 super Yang-Mills theories,” Nucl. Phys. 492 (1997), 647–681, hepth/9609116;Google Scholar
  66. J. Isidro, A. Mukherjee, J. Nunes, and H. Schnitzer, “A note on the Picard—Fuchs equations for Al = 2 Seiberg-Witten theories,” Int. J. Mod. Phys. A13 (1998), 233–250, hep-th/9703176;Google Scholar
  67. J. Isidro, A. Mukherjee, J. Nunes, and H. Schnitzer, “On the Picard Fuchs equations for massive ./V = 2 Seiberg-Witten theories,”Nucl. Phys. B502 (1997), 363–382, hepth/9704174.Google Scholar
  68. 31.
    E. D’Hoker, I.M. Krichever, and D.H. Phong, “The renormalization group equation for Al = 2 supersymmetric gauge theories,” Nucl. Phys. B494 (1997), 89–104, hep-th/9610156.Google Scholar
  69. 32.
    M. Matone, “Instantons and recursion relations in Al = 2 SUSY gauge theories,” Phys. Lett. B357 (1996), 342–348, hep-th/9506102;Google Scholar
  70. T. Eguchi and S.K. Yang, “Prepotentials of Al = 2 susy gauge theories and soliton equations,” Mod. Phys. Lett. All (1996), 131–138, hepth/9510183;Google Scholar
  71. T. Nakatsu and K. Takasaki, “Whitham-Toda hierarchy and Al = 2 supersymmetric Yang-Mills theory,” Mod. Phys. Lett. All (1996), 157–168, hep-th/9509162;Google Scholar
  72. J. Sonnenschein, S. Theisen, and S. Yankielowicz, “On the relation between the holomorphic pre-potential and the quantum moduli in SUSY gauge theories,” Phys. Lett. B367 (1996), 145 150, hep-th/9510129;Google Scholar
  73. K. Takasaki, “Whitham deformations and tau functions in 1V= 2 supersymmetric gauge the-ones,” Prog. Theor. Phys. Suppl. 135 (1999), 53–74, hep-th/9905221;Google Scholar
  74. J. Edelstein, M. Gomez-Reina, and J. Mas, “Instanton corrections in N 2 supersymmetric theories with classical gauge groups and fundamental matter hypermultiplets,” Nucl Phys. B561 (1909), 273 292, hep-th/9904087.Google Scholar
  75. 33.
    A. Marshakov, A. Mironov, and A. Morozov. “WDVV-like equations in JV= 2 SUSY Yang Mills theory,” Phys. Lett. B389 (1996), 43 52, hep-th/9607109;Google Scholar
  76. A. Marshakov, A. Mironov, and A. Morozov. “More evidence for the WDVV equations in JV 2 SUSY Yang Mills theory,” Int. J. Mod. Phys. A15 (2000), 1157 1206, hep-th/9701123;Google Scholar
  77. J.M. Isidro, “On the WDVV equation and M- theory,” Nucl. Phys. B539 (1999), 379–402, hep-th/9805051.Google Scholar
  78. 34.
    I.M. Krichever, “The tau function of the universal Whitham hierarchy, matrix models, and topological field theories,” Comm Pure Appt, Math. 47 (1994), 437–475; “Google Scholar
  79. I.M. Krichever, The dispersionless Lax equations and topological minimal models,“ ` Comm Math. Phys. 143 (1992), 415–429: B.A. Dubrov.in. ”l íaiüil.ioniaii formalism for Whitham hierarchies and topological Landau Ginzburg models,“ Comm. Math. Phys. 145 (1992), 195–207;CrossRefGoogle Scholar
  80. I.M. Krichever, “Integrable systems in topological field theory,” Nucl. Phys. B379 (1992). 627–689; “Geometry of 2D topological field theories,” in Integrable Systems and Quantum Groves. eds. M. Francaviglia and S. Greco, Lecture Notes in Math., vol. 1620, Springer, 1996, 120–348.Google Scholar
  81. 35.
    G. Chan and E. D’Hoker, “Instanton recursion for the effective prepotential in IV = 2 super Yang Mills,” Neel. Phys. B564 (2000), 503 516, hep-th/9906193.Google Scholar
  82. 36.
    J.D. Edelstein and J. Mas, “Strong coupling expansion and Scilx’rg Witten Whitham equations,” Phys. Lett. B452 (1999). (i9 75]tep_ th/9901006.Google Scholar
  83. 37.
    M. Douglas and S. Shenker, “Dynamics of SU(N) super’yniimetric gauge theory,” Nucl. Phys. B447 (1995), 271–296, hep-th/603163;Google Scholar
  84. E. D’Hoker and D.H. Phong, “Strong coupling expansions of SIT(N) Seiberg Witten theory,” Phys. Lett. B397 (1997), 94–103, hep th/9701055.Google Scholar
  85. 38.
    M. Marino and G. Moore, “The Donaldson Witten function for gauge groups of rank larger than one,” Comm Math. Phys 199 (1998), 25–69, hep-th/9802185;Google Scholar
  86. M. Marino, “The uses of Whitham hierarchies,” Prog. Theor. Phys. Suppl. 135 (1999), 29–52, hep-th/9905053.Google Scholar
  87. 39.
    W. Lerche, “Introduction to Seiberg-Witten theory and its stringy origins,” Nucl. Phys. Proc. Suppl. 55B (1997), 83 117, hepth/9611190;Google Scholar
  88. A. Marshakov, “On integrable systems and supersymmetric gauge theories,” Theor. Math. Phys. 112 (1997), 791–826, hepth/9702083;Google Scholar
  89. A. Klemm, “On the geometry behind .Af = 2 supersymmetric effective actions in, four dimensions,” Trieste 1996, High Energy Physics and Cosmology, 120–242, hep-th/9705131;Google Scholar
  90. A. Marshakov and A. Mironov, “Seiberg-Witten systems and Whitham hierarchires: a short review,” hep-th/9809196;Google Scholar
  91. E. D’Hoker and D.H. Phong, “Seiberg—Witten theory and Integrable Systems,” hep-th/9903068; C. Lozano, “Duality in topological quantum field theories,” hepth/9907123.Google Scholar
  92. 40.
    P. Argyres and A. Shapere, “The vacuum structure of ,’V = 2 superQCD with classical gauge groups,” Nucl. Phys. B461 (1996), 437–459,hep-th/9509175;Google Scholar
  93. U.H. Danielsson and B. Sundborg, “The moduli space and monodromies of N = 2 supersymmetric SO(2r + 1) gauge theories”, Phys. Lett. B358 (1995), 273–280, hep-th/9504102;Google Scholar
  94. A. Brandhuber and K. Landsteiner, “On the monodromies of Ar = 2 supersymmetric Yang—Mills theories with gauge group SO(2n),” Phys. Lett. B358 (1995), 73–80, hep-th/9507008.Google Scholar
  95. 41.
    . A.M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras. I, Birkhäuser, Boston, 1990 and references therein; A.N. Leznov and M.V. Saveliev, “Group theoretic methods for integration of nonlinear dynamical systems,” Birkhäuser, Boston, 1992.Google Scholar
  96. 42.
    M. Adler and P. Van Moerbeke, “The Toda lattice, Dynkin diagrams, singularities and Abelian varieties,” Inventa Math. 103 (1991), 223278; “Completely integrable systems, Euclidean Lie algebras, and curves,” Advances in Math. 38 (1980), 267–317;MATHCrossRefGoogle Scholar
  97. M. Adler and P. Van Moerbeke, “Linearization of Hamiltonian systems, Jacobi varieties, and representation theory, ” Advances in Math. 38 (1980), 318–379.MATHCrossRefGoogle Scholar
  98. 43.
    A. Gorskii, I.M. Krichever, A. Marshakov, A. Mironov, and A. Morozov, “Integrability and Seiberg—Witten exact solution,” Phys. Lett. B355 (1995), 466–474, hep-th/9505035.Google Scholar
  99. 44.
    E. Martinet and N. Warner, “Integrable systems and supersymmetric gauge theories,” Nucl. Phys. B459 (1996), 97–112, hep-th/9509161.Google Scholar
  100. 45.
    F. Calogero, “Exactly solvable one-dimensional many-body problems,” Lett. Nuovo Cim. 13 (1975), 411–416;MathSciNetCrossRefGoogle Scholar
  101. J. Moser, “Three integrable Hamiltonian systems. connected with isospectral deformations,” Advances in Math. 16 (1975), 197–220;MathSciNetADSMATHCrossRefGoogle Scholar
  102. B. Sutherland, “Exact results for a quantum many-body problem in one dimension. II,” Phys. A5 (1972), 1372–1376;ADSGoogle Scholar
  103. C. Marchioro, F. ’ Calogero, and O. Ragnisco, “Exact solution of the classical and quantal one-dimensional many-body problem with the two-body potential V(ax) = G2A2/sinh2(ax),” Lett. Nuovo Cim. 13 (1975), 383–387;MathSciNetCrossRefGoogle Scholar
  104. S.N.M. Ruijsenaars, “Systems of Calogero-Moser type,” in Particles and Fields, eds. G. Semenoff and L. Vinet, Springer, 1999, 251–352.Google Scholar
  105. 46.
    A. Polychronakos, “Lattice integrable systems of Haldane—Shastry type,” Phys. Rev. Lett. 70 (1993), 2329–2331; “Google Scholar
  106. A. Polychronakos, New integrable systems from unitary matrix models,“ Phys. Lett. B277 (1992), 102–108; ”Generalized statistics in one dimension,“ presented at Les Houches Summer School in Theoretical Physics, Session 69: Topological Aspects of Low-Dimensional Systems, Les Houches, France, 7–31 July 1998, hep-th/9902157;Google Scholar
  107. L. Lapointe and L. Vinet, “Exact operator solution of the Calogero-Sutherland model,” Commun Math. Phys. 178 (1996), 425–452, q-alg/9509003.Google Scholar
  108. 47.
    I.M. Krichever, “Elliptic solutions of the Kadomtsev—Petviashvili equation and integrable systems of particles,” Funct. Anal Appl. 14 (1980) 282–290.CrossRefGoogle Scholar
  109. 48.
    A. Treibich and J.-L. Verdier, “Solitons elliptiques,” The Grothen-dieck Festschrift, vol. III, Birkhäuser, Boston, 1990, 437–480;CrossRefGoogle Scholar
  110. R. Don-agi and E. Markham, “Spectral curves, algebraically integrable Hamiltonian systems, and moduli of bundles,” in Integrable Systems and Quantum Groups, Lecture Notes in Math., vol. 1620, Springer, 1996, 1–119, alg-geom/9507017Google Scholar
  111. E. Markham, “Spectral curves and integrable systems,” Comp. Math: 93 (1994), 255–290;Google Scholar
  112. R. Donagi, “Seiberg—Witten integrable systems,” in Algebraic geometrySanta Cruz 1995, eds. J. Kollar, R. Lazarsfeld, and D.R. Morrison, Proc. Sympos. Pure Math., vol: 62, Part 2, Amer. Math. Soc., 1997, 3–43, alg-geom/9705010.Google Scholar
  113. 49.
    M.R. Adams, J. Harnard, and J. Hurtubise, “Coadjoint orbits, spectral curves, and Darboux coordinates,” in The Geometry of Hamiltonian Systems, ed.. T. Ratiu, Math. Sci. Res. Inst. Publ., vol. 22, Springer, 1991, 9–21;Google Scholar
  114. M.R. Adams, J. Harnard, and J. Hurtubise, “Darboux coordinates and Liouville-Arnold integration in loop algebras,” Comm. Math. Phys. 155 (1993), 385–413;MathSciNetADSMATHCrossRefGoogle Scholar
  115. J. Hurtubise, “Integrable systems and algebraic surfaces,” Duke Math. J. 83 (1996), 19–50 Erratum, Duke Math. J. 84 (1996), 815.MathSciNetCrossRefGoogle Scholar
  116. 50.
    H. Braden, “A conjectured R-matrix, J. Phys. A 31 (1998), 1733–1741.MathSciNetADSMATHCrossRefGoogle Scholar
  117. 51.
    H.W. Braden and V.M. Buchstaber, “The general analytic solution of a functional equation of addition type,” Siam J. Math. Anal. 28 (1997), 903–923.MathSciNetMATHGoogle Scholar
  118. 52.
    I. Inozemtsev, “Lax representation with spectral parameter on a torus for integrable particle systems,” Lett. Math. Phys. 17 (1989), 11–17;MathSciNetADSMATHCrossRefGoogle Scholar
  119. I. Inozemtsev, “The finite Toda lattices,” Comm. Math. Phys. 121 (1989) 628–638.MathSciNetADSGoogle Scholar
  120. 53.
    . E. D’Hoker and R. Jackiw, “Classical and quantum Liouville theory,” Phys. Rev. D26 (1982), 3517–3542;MathSciNetADSGoogle Scholar
  121. E. D’Hoker and P. Kurzepa, “2-D quantum gravity and Liouville theory,” Mod. Phys. Lett. A5 (1990), 1411–1421;MathSciNetADSGoogle Scholar
  122. E. D’Hoker, “Equivalence of Liouville theory and 2-D quantum gravity,” Mod. Phys. Lett. A6 (1991), 745–767.MathSciNetADSGoogle Scholar
  123. 54.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett. 30 (1973), 1262 1264;Google Scholar
  124. S. Coleman, “The quantum sine-Gordon equation as the massive Thirring model,” Phys. Rev. Dll (1975), 2088–2097;Google Scholar
  125. E.K. Sklyanin, L.A. Takhtajan, and L.D. Faddeev, “The quantum inverse problem method. I”, Theor. Math. Phys. 40, (1979), 688–706.CrossRefGoogle Scholar
  126. 55.
    H. Airault, H. McKean, and J. Moser, “Rational and elliptic solutions of the KdV equation and integrable systems of N particles on a line,” Comm Pure Appl. Math. 30 (1977), 95–125.MathSciNetMATHGoogle Scholar
  127. 56.
    I.M. Krichever and D.H. Phong, “On the integrable geometry of .N 2 supersymmetric gauge theories and soliton equations,” J. Differential Geometry 45 (1997), 349–389, hep-th/9604199.Google Scholar
  128. 57.
    I.M. Krichever and D.H. Phong, “Symplectic forms in the theory of solitons,” in Surveys in Differential Geometry, vol. IV , eds. C.L. Terng and K. Uhlenbeck, International Press, 1998, 239–313, hepth/9708170; I.M. Krichever, “Elliptic solutions to difference nonlinear equations and nested Bethe ansatz equations,” solv-int/9804016.Google Scholar
  129. 58.
    M.A. Olshanetsky and A.M. Perelomov, “Completely integrable Hamiltonian systems connected with semisimple Lie algebras,” Invent. Math. 37 (1976), 93–108;MathSciNetADSMATHCrossRefGoogle Scholar
  130. M.A. Olshanetsky and A.M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras,” Phys. Rep. 71 C (1981), 313–400.Google Scholar
  131. 59.
    E. D’Hoker and D.H. Phong, “Calogero—Moser Lax pairs with spectral parameter for general Lie algebras,” Nucl. Phys. B530 (1998), 537 610, hep-th/9804124.Google Scholar
  132. 60.
    E. D’Hoker and D.H. Phong, “Calogero—Moser and Toda systems for twisted and untwisted affine Lie algebras,” Nucl. Phys. B530 (1998), 611–640, hep-th/9804125.Google Scholar
  133. 61.
    A. Bordner, E. Corrigan, and R. Sasaki, “Calogero—Moser systems. A new formulation,” Prog. Theor. Phys. 100 (1998), 1107–1129, hepth/9805106;Google Scholar
  134. A. Bordner, R. Sasaki, and K. Takasaki, “Calogero— Moser systems. II. Symmetries and foldings,” Prog. Theor. Phys. 101 (1999), 487 518, hep-th/9809068.Google Scholar
  135. 62.
    S.P. Khastgir, R. Sasaki, and K. Takasaki, “Calogero—Moser Models. IV. Limits to Toda theory,” Prog. Theor. Phys. 102 (1999), 749–776, hep-th/9907102.Google Scholar
  136. 63.
    P. Goddard and D. Olive, “Kac-Moody and Virasoro algebras in relation to quantum physics,” Int. J. Mod. Phys. A1 (1986), 303–414;MathSciNetADSGoogle Scholar
  137. V. Kac, Infinite-Dimensional Lie Algebras, Birkhäuser, Boston, 1983.Google Scholar
  138. 64.
    R. Donagi and E. Witten, “Supersymmetric Yang—Mills and integrable systems,” Nucl. Phys. B460 (1996), 288–334, hep-th/9510101.Google Scholar
  139. 65.
    E. Martinec, “Integrable structures in supersymmetric gauge and string theory,” Phys. Lett. B367 (1996), 91–96, hep-th/9510204;Google Scholar
  140. A. Gorsky and N. Nekrasov, “Elliptic Calogero Moser system from two-dimensional current , algebra,” preprint ITEP-NG/1–94, hepth/9401021;Google Scholar
  141. N. Nekrasov, “Holomorphic bundles and many-body sys tems,” Comm Math. Phys. 180 (1996), 587–604, hep-th/9503157;Google Scholar
  142. M. Olshanetsky, “Generalized Hitchin systems and the Knizhnik Zamolodchikov-Bernard equation on elliptic curves,” Lett. Math. Phys. 42(1997), 59–71, hep-th/9510143.Google Scholar
  143. 66.
    E. D’Hoker and D.H. Phong, “Calogero—Moser systems in SU(N) Seiberg Witten theory,” Nucl. Phys. B513(1998), 405–444, hepth/9709053.Google Scholar
  144. 67.
    E. D’Hoker and D.H. Phong, “Order parameters, free fermions, and conservation laws for Calogero—Moser systems,” Asian J. ` Math. 2 (1998), 655–666, hep-th/9808156.Google Scholar
  145. 68.
    E. D’Hoker and D.H. Phong, “The geometry of string perturbation theory,” Rev. Mod. Physics 60 (1988), 917–1065;MathSciNetADSCrossRefGoogle Scholar
  146. E. D’Hoker and D.H. Phong, “Loop amplitudes for the fermionic string,” Nucl. Phys. B278 (1986), 225–241;MathSciNetADSCrossRefGoogle Scholar
  147. E. D’Hoker and D.H. Phong, “On determinants of Laplacians on Riemann surfaces,” Comm. Math. Phys. 105 (1986), 537–545.MathSciNetCrossRefGoogle Scholar
  148. 69.
    K. Vaninsky, “On explicit parametrization of spectral curves for Moser-Calogero particles and its applications,” Int. Math. Res. Notices (1999), 509–529.Google Scholar
  149. 70.
    J. Minahan, D. Nemeschansky, and N. Warner, “Instanton expansions for mass deformed.1V = ”4 super Yang-Mills“ theory,” Nucl. Phys. B528(1998), 109–132, hep-th/9710146.Google Scholar
  150. 71.
    E. Witten, “Solutions of four-dimensional field theories via M- Theory,” Nucl. Phys. B500(1997), 3–42, hep-th/9703166.Google Scholar
  151. 72.
    S. Katz, P. Mayr, and C. Vafa, “Mirror symmetry and exact solutions of 4D N= 2 gauge theories. I.;” Adv. Theor. Math. Phys. 1(1998), 53–114, hep-th/9706110;Google Scholar
  152. S. Katz, A. Klemm, and C. Vafa, “Geometric engineering of quantum field theories,” Nucl. Phys. B497 (1997), 173–195, hep-th/9609239;Google Scholar
  153. M. Bershadsky, K. Intriligator, S. Kachru, D. R. Morrison, V. Sadov, and C. Vafa, “Geometric singularities and enhanced gauge symmetries,” Nucl. Phys. B481 (1996), 215–252, hepth/9605200;Google Scholar
  154. S. Kachru and C. Vafa, “Exact results for Af = 2 cornpactifications of heterotic strings,” Nucl. Phys. B450 (1995), 69–89, hep-th/9505105.Google Scholar
  155. 73.
    E. D’Hoker and D. H. Phong, “Lax pairs and spectral curves for Calogero-Moser and spin Calogero-Moser systems,” Regular and Chaotic Dynamics textbf3 (1998), 27–39, hep-th/9903002.Google Scholar
  156. 74.
    E. D’Hoker and D. H. Phong, “Spectral curves for super Yang-Mills with adjoint hypermultiplet for general Lie algebras,” Nucl. Phys. B534 (1998), 697–719, hep-th/9804126.Google Scholar
  157. 75.
    A. Brandhuber, J. Sonnenschein, S. Theisen, and S. Yankielowicz, “M Theory and Seiberg-Witten curves: orthogonal and symplectic groups,” Nucl. Phys. B504 (1997), 175–188, hep-th/9705232;Google Scholar
  158. K. Landsteiner and E. Lopez, “New curves from branes,” Nucl.Phys. B516 (1998), 273–296, hep-th/9708118;Google Scholar
  159. K. Landsteiner, E. Lopez, and D.A. Lowe, “M = 2 supersymmetric gauge theories, branes and orientifolds,” Nucl. Phys. B507 (1997), 197–226, hep-th/9705199.Google Scholar
  160. 76.
    A. M. Uranga, “Towards mass deformed .IV = 4 SO(N) and Sp(K) gauge theories from brane configurations,” Nucl. Phys. B526 (1998), 241–277, hep-th/9803054.Google Scholar
  161. 77.
    T. Yokono, “Orientifold four plane in brane configurations and JV = 4 USp(2N) and SO(2N) theory,” Nucl. Phys. B532 (1998), 210–226, hep-th/9803123;Google Scholar
  162. K. Landsteiner, E. Lopez, and D. Lowe, “Supersymmetric gauge theories from branes and orientifold planes,” JHEP 9807 (1998), 011, hep-th/9805158.Google Scholar
  163. 78.
    A. Gorsky, “Branes and Integrability in the JV = 2 SUSY YM theory,” Phys. Lett. B410 (1997), 22–26, hep-th/9612238;Google Scholar
  164. A. Gorsky, S. Gukov, and A. Mironov, “Susy field theories, integrable systems and their stringy brane origin,” Nucl. Phys. B518 (1998), 689–713, hep-th/9710239;Google Scholar
  165. A. Cherkis and A. Kapustin, “Singular monopoles and supersymmetric gauge theories in three dimensions,” Nucl. Phys. B525 (1998), 215–234, hep-th/9711145.Google Scholar
  166. 79.
    H. Braden, A. Marshakov, A. Mironov, and A. Morozov, “The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory,” Nucl. Phys. B558 (1999), 371–390, hep-th/9902205;Google Scholar
  167. Y. Ohta, “Instanton correction of prepotential in Ruijsenaars model associated with /V = 2 SU(2) Seiberg-Witten,” J. Math. Phys. 41 (2000), 45414550, hep-th/9909196;Google Scholar
  168. H.W. Braden, A. Marshakov, A. Mironov, and A. Morozov, “Seiberg-Witten theory for - a nontrivial compactification from five to four dimensions,” Phys. Lett. B448 (1999), 195–202, hep-th/9812078;Google Scholar
  169. K. Takasaki, “Elliptic Calogero-Moser systems and isomonodromic deformations,” J. Math. Phys. 40 (1999), 5787–5821, math.QA/9905101;Google Scholar
  170. A.M. Khvedelidze and D.M. Mladenov, “EulerCalogero-Moser system from SU(2) Yang-Mills theory,” Phys.Reú. D62 (2000), 125016, hep-th/9906033;Google Scholar
  171. A. Gorsky and A. Mironov, “Solutions to the reflection equation and integrable systems for N = 2 SQCD with classical groups,” Nucl. Phys. B550(1999), 513–530, hepth/9902030;Google Scholar
  172. I.M. Krichever, “Elliptic analog of the Toda lattice,” Int. Math. Res. Notices (2000), 383–412, hep-th/9909224.Google Scholar
  173. 80.
    N. Hitchin, “Stable bundles and integrable systems,” Duke Math. J. 54 (1987), 91–114.MathSciNetMATHGoogle Scholar
  174. 81.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. II, R.E. Krieger, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Eric D’Hoker
  • D. H. Phong

There are no affiliations available

Personalised recommendations