Skip to main content
  • 1155 Accesses

Abstract

The inversion formula for Fourier series obtained in Chapter A2 requires a rather strong condition of summability of the Fourier coefficients series. Moreover, this condition implies that the function itself is almost everywhere equal to a continuous function. In this section, the class of functions for which the inversion formula holds is extended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz, M.J. and Jokas, A.S. (1997). Complex Variables, Cambridge University Press.

    MATH  Google Scholar 

  2. Bracewell, R.N. (1991). The Fourier Transform and Its Applications, 2nd rev. ed., McGraw-Hill; New York.

    Google Scholar 

  3. Gasquet, C. and Witomski, P. (1991). Analyse de Fourier et Applications, Masson: Paris.

    Google Scholar 

  4. Helson, H. (1983). Harmonic Analysis, Addison-Wesley: Reading, MA.

    MATH  Google Scholar 

  5. Katznelson, Y. (1976). An Introduction to Harmonic Analysis, Dover: New York.

    MATH  Google Scholar 

  6. Kodaira, K. (1984). Introduction to Complex Analysis, Cambridge University Press.

    MATH  Google Scholar 

  7. Körner, T.W. (1988). Fourier Analysis, Cambridge University Press.

    MATH  Google Scholar 

  8. Rudin, W. (1966). Real and Complex Analysis, McGraw-Hill: New York.

    MATH  Google Scholar 

  9. Titchmarsh, E.C. (1986). The Theory of Functions, Oxford University Press.

    Google Scholar 

  10. Tolstov, G. (1962). Fourier Series, Prentice-Hall (Dover edition, 1976).

    Google Scholar 

  11. Zygmund, A. (1959). Trigonometric Series, (2nd ed., Cambridge University Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brémaud, P. (2002). Pointwise Convergence of Fourier Series. In: Mathematical Principles of Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3669-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3669-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2956-3

  • Online ISBN: 978-1-4757-3669-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics