Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 15))

Abstract

Localization is a fundamental task of hearing. Identification of the locations of sound sources permits animals to locate prey or to avoid predators. Spatial hearing improves signal detection and aids in the segregation of multiple sources, thus improving identification of sounds. The importance of sound localization for the auditory system is reflected in the organization of the auditory brainstem, which contains several discrete nuclei that appear to be specialized for analysis of particular acoustical cues for sound source location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahissar M, Ahissar E, Bergman H, Vaadia E (1992) Encoding of sound-source location and movement-activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. J Neurophysiol 67: 203–215.

    PubMed  CAS  Google Scholar 

  • Andersen P, Knight L, Merzenich MM (1980) The thalamocortical and corticothalmic connections of AI, AII, and the anterior auditory field (AFF) in the cat: Evidence for two largely segregated systems of connections. J Comp Neurol 194: 663–701.

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB (1972) Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1: 371–394.

    Article  PubMed  CAS  Google Scholar 

  • Barone P, Clarey JC, Irons WA, Imig TJ (1996) Cortical synthesis of azimuth-sensitive single-unit responses with nonmonotonic level tuning: A thalamocortical comparison in the cat. J Neurophysiol 75: 1206–1220.

    PubMed  CAS  Google Scholar 

  • Beitel RE, Kaas JH (1993) Effects of bilateral and unilateral ablation of auditory cortex in cats on the uniconditioned head orienting response to acoustic stimuli. J Neurophysiol 70: 351–369.

    PubMed  CAS  Google Scholar 

  • Benson DA, Hienz RD, Goldstein Jr MH (1981) Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: Spatial tuning and behavioral dependency. Brain Res 219: 249–267.

    Article  PubMed  CAS  Google Scholar 

  • Blauert J (1969–1970) Sound localization in the median plane. Acustica 22:205–213.

    Google Scholar 

  • Blauert J (1983) Spatial Hearing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brown CH, Schessler T, Moody D, Stebbins W (1982) Vertical and horizontal sound localization in primates. J Acoust Soc Am 72: 1804–1811.

    Article  PubMed  CAS  Google Scholar 

  • Brugge JF, Reale RA, Hind JE, Chan JCK, Musicant AD, Poon PWF (1994) Simulation of free-field sound sources and its application to studies of cortical mechanisms of sound localization in the cat. Hear Res 73: 67–84.

    Article  PubMed  CAS  Google Scholar 

  • Brugge JF, Reale RA, Hind JE (1996) The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. J Neurosci 16: 4420–4437.

    PubMed  CAS  Google Scholar 

  • Bushara KO, Weeks RA, Ishii K, Catalan M, Tian B, Rauschecker JP, Hallett M (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci 2: 759–766.

    Article  PubMed  CAS  Google Scholar 

  • Clarey JC, Irvine DRF (1990) The anterior ectosylvian auditory field in the cat: I. An electrophysiological study of its relationship to surrounding auditory cortical fields. J Comp Neurol 301: 289–303.

    Article  PubMed  CAS  Google Scholar 

  • Clarey JC, Barone P, Imig T (1992) Physiology of Thalamus and Cortex. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 232–334.

    Chapter  Google Scholar 

  • Clarey JC, Barone P, Imig TJ (1994) Functional organization of sound direction and sound pressure level in primary auditory cortex of the cat. J Neurophysiol 72: 2383–2405.

    PubMed  CAS  Google Scholar 

  • Efron B, Tibshirani R (1991) Statistical data analysis in the computer age. Science 253: 390–395.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont JJ (1998) Azimuth coding in primary auditory cortex of the cat. II. Relative latency and interspike interval representation. J Neurophysiol 80: 2151–2161.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ, Mossop JE (1998) Azimuth coding in primary auditory cortex of the cat. I. Spike synchrony versus spike count representations. J Neurophysiol 80: 2133–2150.

    PubMed  CAS  Google Scholar 

  • Eisenman LM (1974) Neural encoding of sound location: An electrophysiological study in auditory cortex (AI) of the cat using free field stimuli. Brain Res 75: 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Evans EF (1967) Cortical representation. In: de Reuck AUS, Knight J (eds) Symposium on Hearing Mechanisms in Vertebrates. London: CIBA, Churchill, pp. 272–295.

    Google Scholar 

  • Furukawa S, Xu L, Middlebrooks JC (2000) Coding of sound-source location by ensembles of cortical neurons. J Neurosci 20: 1216–1228.

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233: 1416–1419.

    Article  PubMed  CAS  Google Scholar 

  • Greene TC (1929) The ability to localize sound: a study of binaural hearing in patients with tumor of the brain. Arch Surg 18: 1825–1841.

    Article  Google Scholar 

  • Grunewald A, Linden JF, Andersen RA (1999) Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. J Neurophysiol 82: 330–342.

    PubMed  CAS  Google Scholar 

  • Hebrank J, Wright D (1974) Spectral cues used in the localization of sound sources on the median plane. J Acoust Soc Am 56: 1829–1834.

    Article  PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1990) Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques. J Neurophysiol 64: 915–931.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1988) Sound localization acuity in the cat: Effect of azimuth, signal duration, and test procedure. Hear Res 36: 221–232.

    Article  PubMed  CAS  Google Scholar 

  • Huang AY, May BJ (1996) Sound orientation behavior in cats. II. Mid-frequency spectral cues for sound localization. J Acoust Soc Am 100: 1070–1080.

    Article  PubMed  CAS  Google Scholar 

  • Imig TJ, Irons WA, Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. J Neurophysiol 63: 1448–1466.

    PubMed  CAS  Google Scholar 

  • Jenison RL (1998) Models of direction estimation with spherical-function approximated cortical receptive fields. In: Brugge JF, Poon PWF (eds) Central Auditory Processing and Neural Modeling. New York: Plenum, pp. 161–174.

    Chapter  Google Scholar 

  • Jenison RL, Reale RA, Hind JE, Brugge JF (1998) Modeling of auditory spatial receptive fields with spherical approximation functions. J Neurophysiol 80: 2645–2656.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Masterton RB (1982) Sound localization: Effects of unilateral lesions in central auditory system. J Neurophysiol 47: 987–1016.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. J Neurophysiol 52: 819–847.

    PubMed  CAS  Google Scholar 

  • Kavanagh GL, Kelly JB (1987) Contribution of auditory cortex to sound localization by the ferret (Mustela putorius). J Neurophysiol 57: 1746–1766.

    PubMed  CAS  Google Scholar 

  • Klingon GH, Bontecou DC (1966) Localization in auditory space. Neurology 16: 879–886.

    Article  Google Scholar 

  • Korte M, Rauschecker JP (1993) Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J Neurophysiol 70: 1717–1721.

    PubMed  CAS  Google Scholar 

  • Linden JF, Grunewald A, Andersen RA (1999) Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation. J Neurophysiol 82: 343–358.

    PubMed  CAS  Google Scholar 

  • Litovsky RY, Colburn HS, Yost WA, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106: 1633–1654.

    Article  PubMed  CAS  Google Scholar 

  • Makous JC, Middlebrooks JC (1990) Two-dimensional sound localization by human listeners. J Acoust Soc Am 87: 2188–2200.

    Article  PubMed  CAS  Google Scholar 

  • May BJ, Huang AY (1996) Sound orientation behavior in cats. I. Localization of broadband noise. J Acoust Soc Am 100: 1059–1069.

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni P, Bracewell RM, Barash S, Andersen RA (1996) Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. J Neurophysiol 75: 1233–1241.

    PubMed  CAS  Google Scholar 

  • Meredith MA, Clemo HR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (field AES) to the superior colliculus in the cat: An anatomical and electrophysiological study. J Comp Neurol 289: 687–707.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Knight PL, Roth GL (1973) Cochleotopic organization of primary auditory cortex in the cat. Brain Res 63: 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Mickey BJ, Middlebooks JC (2001) Responses of auditory cortical neurons to pairs of sounds: correlates of fusion and localization. J Neurophysiol 86: 1333–1350.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC (1992) Narrow-band sound localization related to external ear acoustics. J Acoust Soc Am 92: 2607–2624.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC (1998) Location coding by auditory cortical neurons. In: Poon PWF, Brugge JF (eds) Central auditory processing and neural modeling. New York: Plenium Press, pp. 139–148.

    Chapter  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Ann Rev Psychol 42: 135–159.

    Article  CAS  Google Scholar 

  • Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4: 2621–2634.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J Neurosci 1: 107–120.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Xu L, Eddins AC, Green DM (1998) Codes for sound-source location in nontonotopic auditory cortex. J Neurophysiol 80: 863–881.

    PubMed  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30: 237–246.

    Article  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. TINS 414–417.

    Google Scholar 

  • Musicant AD, Chan JCK, Hind JE (1990) Direction-dependent spectral properties of cat external ear: New data and cross-species comparisons. J Acoust Soc Am 87: 757–781.

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR, King AJ (1982) The representation of auditory space in the mammalian superior colliculus. Nature 299: 248–249.

    Article  PubMed  CAS  Google Scholar 

  • Pinek B, Duhamel JR, Cave C, Brouchon M (1989) Audio-Spatial deficits in humans: Differential effects associated with left versus right hemisphere parietal damage. Cortex 25: 175–186.

    PubMed  CAS  Google Scholar 

  • Poirier P, Lassonde M, Villemure J-G, Geoffroy G, Lepore F (1994) Sound localization in hemispherectomized patients. Neuropsychologica 32: 541–553.

    Article  CAS  Google Scholar 

  • Poirier P, Jiang H, Lepore F, Guillemot JP (1997) Positional, directional and speed selectivities in the primary auditory cortex of the cat. Hear Res 113: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Populin LC, Yin TC (1998) Behavioral studies of sound localization in cat. J Neurosci 18: 2147–2160.

    PubMed  CAS  Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF, McKay J (1990a) Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. J Neurophysiol 64: 872–887.

    CAS  Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF (1990b) Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. J Neurophysiol 64: 888–902.

    CAS  Google Scholar 

  • Rauschecker JP (1998) Parallel processing in the auditory cortex of primates. Audiol Neurootol 3: 86–103.

    Article  PubMed  CAS  Google Scholar 

  • Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192: 265–291.

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH (1998) Rapidly induced auditory plasticity:The ventriloquism aftereffect. Proc Nat Acad Sci USA 95: 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH, Guard DC, Phan ML, Su T-IK (2000) Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. J Neurophysiol 83: 2723–2739.

    PubMed  CAS  Google Scholar 

  • Reinoso-Suarez F, Roda JM (1985) Topographical organization of the cortical afferent connections to the cortex of the anterior ectosylvian sulcus in the cat. Exp Brain Res 59: 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Rice JJ, May BJ, Spirou GA, Young ED (1992) Pinna-based spectral cues for sound localization in cat. Hear Res 58: 132–152.

    Article  PubMed  CAS  Google Scholar 

  • Roda JM, Reinoso-Suarez R (1983) Topographical organization of the thalamic projections to the cortex of the anterior ectosylvian sulcus in the cat. Exp Brain Res 49: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2: 1131–1136.

    Article  PubMed  CAS  Google Scholar 

  • Ruff RM, Hersh NA, Pribram KH (1981) Auditory spatial deficits in the personal and extrapersonal frames of reference due to cortical lesions. Neuropsychologica 19: 435–443.

    Article  CAS  Google Scholar 

  • Russo GS, Bruce CJ (1994) Frontal eye field activity preceding aurally guided saccades. J Neurophysiol 71: 1250–1253.

    PubMed  CAS  Google Scholar 

  • Sanchez-Longo LP, Forster FM (1958) Clinical significance of impairment of sound localization. Neurology 8: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Sovijarvi ARA, Hyvarinen J (1974) Auditory cortical neurons in the cat sensitive to the direction of sound source movement. Brain Res 73: 455–471.

    Article  PubMed  CAS  Google Scholar 

  • Stricanne B, Andersen RA, Mazzoni P (1996) Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. J Neurophysiol 75: 1233–1241.

    Google Scholar 

  • Thompson GC, Cortez AM (1983) The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behav Brain Res 8: 211–216.

    Article  PubMed  CAS  Google Scholar 

  • Thompson GC, Masterton RB (1978) Brainstem auditory pathway involved in reflexive head orientation to sound. J Neurophysiol 41: 1183–1202.

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfields RJW (eds) Analysis of Visual Behaviour. Cambridge: MIT Press, pp. 549–586.

    Google Scholar 

  • Vaadia E, Benson DA, Hienz RD, Goldstein JR, Moise H (1986) Unit study of monkey frontal cortex: Active localization of auditory and visual stimuli. J Neurophysiol 56: 934–952.

    PubMed  CAS  Google Scholar 

  • Wortis SB, Pfeiffer AZ (1948) Unilateral auditory-spatial agnosia. J Nery Ment Dis 108: 181–186.

    Article  CAS  Google Scholar 

  • Xu L, Middlebrooks JC (2000) Individual differences in external-ear transfer functions of cats. J Acoust Soc Am 107: 1451–1459.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Furukawa S, Middlebrooks JC (1998) Sensitivity to sound-source elevation in non-tonotopic auditory cortex. J Neurophysiol 80: 882–894.

    PubMed  CAS  Google Scholar 

  • Xu L, Furukawa S, Middlebrooks JC (1999) Auditory cortical responses in the cat to sounds that produce spatial illusions. Nature 399: 688–691.

    Article  PubMed  CAS  Google Scholar 

  • Young ED, Rice.1.1, Tong SC (1996) Effects of pinna position on head-related transfer functions in the cat. J Acoust Soc Am 99: 3064–3076.

    CAS  Google Scholar 

  • Zattore RJ, Penhume VB (2001) Spatial localization after excision of human auditory cortex. J Neurosci 21: 6321–6328.

    Google Scholar 

  • Zattore RJ, Ptito A, Villemure J-G (1995) Preserved auditory spatial localization following cerebral hemispherectomy. Brain 118: 879–889.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Middlebrooks, J.C., Xu, L., Furukawa, S., Mickey, B.J. (2002). Location Signaling by Cortical Neurons. In: Oertel, D., Fay, R.R., Popper, A.N. (eds) Integrative Functions in the Mammalian Auditory Pathway. Springer Handbook of Auditory Research, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3654-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3654-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3183-2

  • Online ISBN: 978-1-4757-3654-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics