Skip to main content

Neural Mechanisms of Encoding Binaural Localization Cues in the Auditory Brainstem

  • Chapter
Integrative Functions in the Mammalian Auditory Pathway

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 15))

Abstract

When an animal hears a sound in its environment, there are several important tasks that the auditory system must try to accomplish. Two major jobs are to determine what it was that produced the sound and where it comes from. Understanding how the nervous system can accomplish these tasks is a major goal of modern auditory neurobiological research. In this book, we explore what is known about these questions at several different levels of the auditory system. The purpose of this chapter is to review the anatomical and physiological mechanisms in the auditory brainstem of mammals that encode where a sound originates. Specifically, this chapter examines the two binaural localization cues: interaural time disparities (ITDs) and interaural level disparities (ILDs) (For abbreviations, see Table 1). The neural mechanisms of sound localization are of particular interest since the location of a stimulus is not represented in the sensory epithelium, as it is in the visual or somatosensory systems, but must be computed by combining input from the two ears in the central auditory system. To a large degree, we understand how these cues are encoded by single cells at this level of the auditory system. Indeed, it appears that certain cells in the auditory brainstem are highly specialized to facilitate the encoding of these cues, and more is known about the central processing of sound localization cues than of any other auditory function (e.g., pitch perception, vowel discrimination).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam TJ, Schwarz DW, Finlayson PG (1999) Firing properties of chopper and delay neurons in the lateral superior olive of the rat. Exp Brain Res 124: 489–502.

    PubMed  CAS  Google Scholar 

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183: 519–538.

    PubMed  CAS  Google Scholar 

  • Adams JC, Mugnaini E (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hearing Res 49: 281–298.

    CAS  Google Scholar 

  • Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393: 268–272.

    PubMed  CAS  Google Scholar 

  • Aitkin L, Schuck D (1985) Low frequency neurons in the lateral central nucleus of the cat inferior colliculus receive their input predominantly from the medial superior olive. Hear Res 17: 87–93.

    PubMed  CAS  Google Scholar 

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49: 1131–1139.

    PubMed  Google Scholar 

  • Banks MI, Smith PH (1992) Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12: 2819–2837.

    PubMed  CAS  Google Scholar 

  • Barnes-Davies M, Forsythe ID (1995) Pre-and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J Physiol 488: 387–406.

    PubMed  CAS  Google Scholar 

  • Batra R, Kuwada S, Stanford TR (1989) Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. J Neurophysiol 61: 257–268.

    PubMed  CAS  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997a) Sensitivity to interaural temporal disparities of low-and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J Neurophysiol 78: 1222–1236.

    CAS  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997b) Sensitivity to interaural temporal disparities of low-and high-frequency neurons in the superior olivary complex. II. Coincidence detection. J Neurophysiol 78: 1237–1247.

    CAS  Google Scholar 

  • Batteau DW (1966) The role of the pinna in human localization. Proc Roy Soc Lond B 168: 158–180.

    Google Scholar 

  • Beckius GE, Batra R, Oliver DL (1999) Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines. J Neurosci 19: 3146–3161.

    PubMed  CAS  Google Scholar 

  • Bernstein LR, Trahiotis C (1985) Lateralization of low-frequency, complex waveforms: the use of envelope-based temporal disparities. J Acoust Soc Am 77: 1868–1880.

    PubMed  CAS  Google Scholar 

  • Berrebi AS, Spirou GA (1998) PEP-19 immunoreactivity in the cochlear nucleus and superior olive of the cat. Neuroscience 83: 535–554.

    PubMed  CAS  Google Scholar 

  • Blackburn CC, Sachs MB (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62: 1303–1329.

    PubMed  CAS  Google Scholar 

  • Bledsoe SC Jr, Snead CR, Helfert RH, Prasad V, Wenthold RJ, Altschuler RA (1990) Immunocytochemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trapezoid body to the lateral superior olive is glycinergic. Brain Res 517: 189–194.

    PubMed  Google Scholar 

  • Borst JG, Helmchen F, Sakmann B (1995) Pre-and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol 489: 825–840.

    PubMed  CAS  Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31: 442–454.

    PubMed  CAS  Google Scholar 

  • Boudreau JC, Tsuchitani C (1970) Cat superior olive s-segment cell discharge to tonal stimulation. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic. pp. 143–213.

    Google Scholar 

  • Bourk TR (1976) Electrical Responses of Neural Units in the Anteroventral Cochlear Nucleus of the Cat. pp. 1–385. Cambridge, MA: Ph.D. Thesis, M.I.T.

    Google Scholar 

  • Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160: 491–506.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Manis PB, Ritz LA (1979) Ipsilateral inhibitory responses in the cat lateral superior olive. Brain Res 177: 189–193.

    PubMed  CAS  Google Scholar 

  • Browner RH, Webster DB (1975) Projections of the trapezoid body and the superior olivary complex of the Kangaroo rat (Dipodomys merriami). Brain Behav Evol 11: 322–354.

    PubMed  CAS  Google Scholar 

  • Brughera AR, Stutman ER, Carney LH, Colburn HS (1996) A model with excitation and inhibition for cells in the medial superior olive. Aud Neurosci 2: 219–233.

    Google Scholar 

  • Brunso-Bechtold JK, Linville MC, Henkel CK (1994) Terminal types on ipsilaterally and contralaterally projecting lateral superior olive cells. Hear Res 77: 99–104.

    PubMed  CAS  Google Scholar 

  • Caird D, Klinke R (1983) Processing of binaural stimuli by cat superior olivary complex neurons. Exp Brain Res 52: 385–399.

    PubMed  CAS  Google Scholar 

  • Campistron G, Buijs RM, Geffard M (1986) Glycine neurons in the brain and spinal cord. Antibody production and immunocytochemical localization. Brain Res 376: 400–405.

    PubMed  CAS  Google Scholar 

  • Cant NB (1984) The fine structure of the lateral superior olivary nucleus of the cat. J Comp Neurol 227: 63–77.

    PubMed  CAS  Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247: 457–476.

    PubMed  CAS  Google Scholar 

  • Cant NB, Hyson RL (1992) Projections from the lateral nucleus of the trapezoid body to the medial superior olivary nucleus in the gerbil. Hear Res 58: 26–34.

    PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1984) The structural basis for stimulus coding in the cochlear nucleus of the cat. In: Berlin C (ed) Hearing Science. San Diego, CA: College-Hill Press. pp. 371–422.

    Google Scholar 

  • Carney LH (1990) Sensitivities of cells in the anteroventral cochlear nucleus of cat to spatio-temporal discharge patterns across primary afferents. J Neurophysiol 64: 437–456.

    PubMed  CAS  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93: 401–417.

    PubMed  CAS  Google Scholar 

  • Carney LH, Yin TCT (1989) Responses of low-frequency cells in the inferior colliculus to interaural time differences of clicks: excitatory and inhibitory components. J Neurophysiol 62: 144–161.

    PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10: 3227–3246.

    PubMed  CAS  Google Scholar 

  • Caspary DM, Backoff PM, Finlayson PG, Palombi PS (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J Neurophysiol 72: 2124–2133.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Neff WD (1973) Localization of pure tones. J Acoust Soc Am 54: 365–372.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Neff WD (1975) Auditory localization: Role of auditory pathways in brainstem of the cat. J Neurophysiol 38: 842–858.

    PubMed  CAS  Google Scholar 

  • Cherry C (1953) Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am 26: 975–979.

    Google Scholar 

  • Chuhma N, Ohmori H (1998) Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. J Neurosci 18: 512–520.

    PubMed  CAS  Google Scholar 

  • Clark GM (1969a) The ultrastructure of nerve endings in the medial superior olive of the cat. Brain Res 14: 293–305.

    CAS  Google Scholar 

  • Clark GM (1969b) Vesicle shape versus type of synapse in the nerve endings of the cat medial superior olive. Brain Res 15: 548–551.

    CAS  Google Scholar 

  • Colburn HS, Han YA, Cullota CP (1990) Coincidence model of MSO responses. Hearing Res 49: 335–346.

    CAS  Google Scholar 

  • Crow G, Rupert AL, Moushegian G (1978) Phase locking in monaural and binaural medullary neurons: implications for binaural phenomena. J Acoust Soc Am 64: 493–501.

    PubMed  CAS  Google Scholar 

  • Ehrlich I, Lohrke S, Friauf E (1999) Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl-regulation. J Physiol (Lond) 520: 121–137.

    CAS  Google Scholar 

  • Elverland HH (1978) Ascending and intrinsic projections of the superior olivary complex in the cat. Exp Brain Res 32: 117–134.

    PubMed  CAS  Google Scholar 

  • Finlayson PG, Caspary DM (1991) Low-frequency neurons in the lateral superior olive exhibit phase-sensitive binaural inhibition. J Neurophysiol 65: 598–605.

    PubMed  CAS  Google Scholar 

  • Forsythe ID (1994) Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol 479: 381–387.

    PubMed  Google Scholar 

  • Forsythe ID, Barnes-Davies M (1993) The binaural auditory pathway: excitatory amino acid receptors mediate dual timecourse excitatory postsynaptic currents in the rat medial nucleus of the trapezoid body. Proc R Soc Lond B Biol Sci 251: 151–157.

    CAS  Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73: 263–284.

    PubMed  CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1985) Differential encoding of rapid changes in sound amplitude by second-order auditory neurons. Exp Brain Res 60: 417–422.

    PubMed  CAS  Google Scholar 

  • Furst M, Aharonson V, Levine RA, Fullerton BC, Tadmor R, Pratt H, Polyakov A, Korczyn AD (2000) Sound lateralization and interaural discrimination. Effects of brainstem infarcts and multiple sclerosis lesions. Hear Res 143: 29–42.

    PubMed  CAS  Google Scholar 

  • Gardner MB, Gardner RS (1973) Problem of localization in the median plane: effect of pinnae cavity occlusion. J Acoust Soc Am 53: 400–408.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Baker BN (1988) Neuroanatomical distribution of receptors for three potential neurotransmitters in the brainstem auditory nuclei of the cat. J Comp Neurol 275: 288–308.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Masterton RB (1983) Acoustic chiasm: efferent projections of the lateral superior olive. J Neurosci 3: 1521–1537.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) Ascending auditory afferents to the nuclei of the lateral lemniscus. J Comp Neurol 197: 673–703.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Hutson KA, Nudo RJ, Masterton RB (1985) Acoustic chiasm II: Anatomical basis of binaurality in lateral superior olive of cat. J Comp Neurol 232: 261–285.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Masterton RB, Baker BN, Wenthold RJ (1991) Acoustic chiasm. III: Nature, distribution, and sources of afferents to the lateral superior olive in the cat. J Comp Neurol 310: 377–400.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Baker BN, Hutson KA, Masterton RB (1992) Acoustic chiasm V: inhibition and excitation in the ipsilateral and contralateral projections of LSO. J Comp Neurol 319: 100–122.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J Neurophysiol 31: 639–656.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32: 613–636.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brownell WE (1973) Discharge characteristics of neurons in the anteroventral and dorsal cochlear nuclei of cat. Brain Res 64: 35–54.

    PubMed  CAS  Google Scholar 

  • Grothe B (1994) Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. J Neurophysiol 71: 706–721.

    PubMed  CAS  Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61: 581–610.

    PubMed  CAS  Google Scholar 

  • Grothe B, Neuweiler G (2000) The function of the medial superior olive in small mammals: temporal receptive fields in auditory analysis. J Comp Physiol [A] 186: 413–423.

    CAS  Google Scholar 

  • Grothe B, Sanes DH (1993) Bilateral inhibition by glycinergic afferents in the medial superior olive. J Neurophysiology 69: 1192–1196.

    CAS  Google Scholar 

  • Grothe B, Sanes DH (1994) Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study. J Neurosci 14: 1701–1709.

    PubMed  CAS  Google Scholar 

  • Guinan JJ Jr, Li RYS (1990) Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hearing Res 49: 321–334.

    Google Scholar 

  • Guinan JJ Jr, Guinan SS, Norris BE (1972a) Single auditory units in the superior olivary complex. I: Responses to sounds and classifications based on physiological properties. Int J Neurosci 4: 101–120.

    Google Scholar 

  • Guinan JJ Jr, Norris BE, Guinan SS (1972b) Single auditory units in the superior olivary complex. II: Location of unit categories and tonotopic organization. Int J Neurosci 4: 147–166.

    Google Scholar 

  • Hafter ER, Jeffress LA (1968) Two-image lateralization of tones and clicks. J Acoust Soc Am 44: 563–569.

    PubMed  CAS  Google Scholar 

  • Held H (1893) Die centrale Gehörleittung. Arch Anat Physiol Abt 201–248.

    Google Scholar 

  • Helfert RH, Schwartz IR (1986) Morphological evidence for the existence of multiple neuronal classes in the cat lateral superior olivary nucleus. J Comp Neurol 244: 533–549.

    PubMed  CAS  Google Scholar 

  • Helfert RH, Schwartz IR (1987) Morphological features of five neuronal classes in the gerbil lateral superior olive. Am J Anat 179: 55–69.

    PubMed  CAS  Google Scholar 

  • Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA (1989) GABA and glycine immunoreactivity in the guinea pig superior olivary complex. Brain Res 501: 269–286.

    PubMed  CAS  Google Scholar 

  • Helfert RH, Juiz JM, Bledsoe SC Jr, Bonneau JM, Wenthold RJ, Altschuler RA (1992) Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig. J Comp Neurol 323: 305–325.

    PubMed  CAS  Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1991) Dendritic morphology and development in the ferret lateral superior olivary nucleus. J Comp Neurol 313: 259–272.

    PubMed  CAS  Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1993) Laterality of superior olive projections to the inferior colliculus in adult and developing ferret. J Comp Neurol 331: 458–468.

    PubMed  CAS  Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1995) Development of glycinergic cells and puncta in nuclei of the superior olivary complex of the postnatal ferret. J Comp Neurol 354: 470–480.

    PubMed  CAS  Google Scholar 

  • Henkel CK, Gabriele ML (1999) Organization of the disynaptic pathway from the anteroventral cochlear nucleus to the lateral superior olivary nucleus in the ferret. Anat Embryol (Berl) 199: 149–160.

    CAS  Google Scholar 

  • Henkel CK, Spangler KM (1983) Organization of the efferent projections of the medial superior olivary nucleus in the cat as revealed by HRP and auto-radiographic tracing methods. J Comp Neurol 221: 416–428.

    PubMed  CAS  Google Scholar 

  • Henning GB (1974a) Detectability of interaural delay in high-frequency complex waveforms. J Acoust Soc Am 55: 84–90.

    CAS  Google Scholar 

  • Henning GB (1974b) Lateralization and the binaural masking-level difference. J Acoust Soc Am 55: 1259–1262.

    CAS  Google Scholar 

  • Hirsh IJ (1948) The influence of interaural phase on interaural summation and inhibition. J Acoust Soc Am 20: 536–544.

    Google Scholar 

  • Inbody SB, Feng AS (1981) Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat. Brain Res 210: 361–366.

    PubMed  CAS  Google Scholar 

  • Irvine DRF (1986) The auditory brainstem: processing of spectral and spatial information. Berlin, Springer-Verlag. pp. 1–276.

    Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN and Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag. pp. 153–231.

    Google Scholar 

  • Irvine DRF, Park VN, McCormick L (1998) Contributions of changes in the timing and amplitude of synaptic inputs to neural sensitivity to interaural intensity differences. In: Palmer AR, Rees A, Summerfield AQ, Meddis R (eds) Psychophysical and Physiological Advances in Hearing. London: Whurr Publishers, Ltd. pp. 359–367.

    Google Scholar 

  • Javel E (1980) Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones. J Acoust Soc Am 68: 133–146.

    PubMed  CAS  Google Scholar 

  • Jean-Baptiste M, Morest DK (1975) Transneuronal changes of synaptic endings and nuclear chromatin in the trapezoid body following cochlear ablations in cats. J Comp Neurol 162: 111–134.

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41: 35–39.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. J Neurophysiol 47: 987–1016.

    PubMed  CAS  Google Scholar 

  • Johnson DH (1974) The response of single auditory nerve fibers in the cat to single tones: synchrony and average discharge rate. Cambridge, MA: Ph.D. Thesis, M.I.T. Johnson D (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Amer 68: 1115–1122.

    Google Scholar 

  • Johnson DH, Tsuchitani C, Linebarger DA, Johnson MJ (1986) Application of a point process model to responses of cat lateral superior olive units to ipsilateral tones. Hear Res 21: 135–159.

    PubMed  CAS  Google Scholar 

  • Johnson DH, Dabak A, Tsuchitani C (1990) Function-based modeling of binaural processing: interaural level. Hear Res 49: 301–319.

    PubMed  CAS  Google Scholar 

  • Joris PX (1996) Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. J Neurophysiol 76: 2137–2156.

    PubMed  CAS  Google Scholar 

  • Joris PX, Yin TCT (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91: 215–232.

    PubMed  CAS  Google Scholar 

  • Joris PX, Yin TCT (1995) Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophysiol 73: 1043–1062.

    PubMed  CAS  Google Scholar 

  • Joris PX, Yin TCT (1998) Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. J Neurophysiol 79: 253–1269.

    PubMed  CAS  Google Scholar 

  • Joris PX, Carney LH, Smith PH, Yin TCT (1994a) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71: 1022–1036.

    CAS  Google Scholar 

  • Joris PX, Smith PH, Yin TCT (1994b) Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. J Neurophysiol 71: 1037–1051.

    CAS  Google Scholar 

  • Joris PX, Smith PH, Yin TCT (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21: 1235–1238.

    PubMed  CAS  Google Scholar 

  • Kandler K, Friauf E (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15: 6890–6904.

    PubMed  CAS  Google Scholar 

  • Kavanagh GL, Kelly JB (1992) Midline and lateral field sound localization in the ferret (Mustela putorius): contribution of the superior olivary complex. J Neurophysiol 67: 1643–1658.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Liscum A, van Adel B, Ito M (1998) Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat’s inferior colliculus. Hear Res 116: 43–54.

    PubMed  CAS  Google Scholar 

  • Kettner RE, Feng J, Brugge JF (1985) Postnatal development of the phase-locked response to low frequency tones of auditory nerve fibers in the cat. J Neurosci 5: 275–283.

    PubMed  CAS  Google Scholar 

  • Kil J, Kageyama GH, Semple MN, Kitzes LM (1995) Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil. J Comp Neurol 353: 317–340.

    PubMed  CAS  Google Scholar 

  • Kiss A, Majorossy K (1983) Neuron morphology and synaptic architecture in the medial superior olivary nucleus. Light-and electron microscope studies in the cat. Exp Brain Res 52: 315–327.

    PubMed  CAS  Google Scholar 

  • Kitzes LM, Kageyama GH, Semple MN, Kil J (1995) Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J Comp Neurol 353: 341–363.

    PubMed  CAS  Google Scholar 

  • Klumpp R, Eady H (1956) Some measurements of interaural time difference thresholds. J Acoust Soc Am 28: 859–860.

    Google Scholar 

  • Kotak VC, Sanes DH (1996) Developmental influence of glycinergic transmission: regulation of NMDA receptor-mediated EPSPs. J Neurosci 16: 1836–1843.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Korada S, Schwartz IR, Sanes DH (1998) A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J Neurosci 18: 4646–1655.

    PubMed  CAS  Google Scholar 

  • Koyano K, Ohmori H (1996) Cellular approach to auditory signal transmission. Jpn J Physiol 46: 289–310.

    PubMed  CAS  Google Scholar 

  • Kuwabara N, Zook JM (1991) Classification of the principal cells of the medial nucleus of the trapezoid body. J Comp Neurol 314: 707–720.

    PubMed  CAS  Google Scholar 

  • Kuwabara N, Zook JM (1992) Projections to the medial superior olive from the medial and lateral nuclei of the trapezoid body in rodents and bats. J Comp Neurol 324: 522–538.

    PubMed  CAS  Google Scholar 

  • Kuwabara N, DiCaprio RA, Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. J Comp Neurol 314: 684–706.

    PubMed  CAS  Google Scholar 

  • Kuwada S, Batra R, Fitzpatrick D (1997) Neural processing of binaural temporal cues. In: Gilkey R, Anderson T (eds) Binaural and Spatial Hearing in Real and Virtual Environments. Mahwah, N.J.: Lawrence Erlbaum Assoc. pp. 399–426.

    Google Scholar 

  • Kuwada S, Stanford TR, Batra R (1987) Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing frequency. J Neurophysiol 57: 1338–1360.

    PubMed  CAS  Google Scholar 

  • Lavine RA (1971) Phase-locking in response of single neurons in cochlear nuclear complex of the cat to low-frequency tonal stimuli. J Neurophysiol 34: 467–483.

    PubMed  CAS  Google Scholar 

  • Leakey D, Sayers B, Cherry C (1958) Binaural fusion of low-and high-frequency sounds. J Acoust Soc Am 30: 222.

    Google Scholar 

  • Lenn NJ, Reese TS (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat 118: 375–390.

    PubMed  CAS  Google Scholar 

  • Levine RA, Gardner JC, Stufflebeam SM, Fullerton BC, Carlisle EW, Furst M, Rosen BR, Kiang NY (1993) Binaural auditory processing in multiple sclerosis subjects. Hear Res 68: 59–72.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1991) Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. J Comp Neurol 313: 240–258.

    PubMed  CAS  Google Scholar 

  • Licklider JCR (1948) The influence of interaural phase relations upon the masking of speech by white noise. J Acoust Soc Am 20: 150–159.

    Google Scholar 

  • Licklider JC, Webster JC, Hedlun JM (1950) On the frequency limits of binaural beats. J Acoust Soc Am 22: 468–473.

    Google Scholar 

  • Lindsey BG (1975) Fine structure and distribution of axon terminals from the cochlear nucleus on neurons in the medial superior olivary nucleus of the cat. J Comp Neurol 160: 81–103.

    PubMed  CAS  Google Scholar 

  • Majorossy K, Kiss A (1990) Types of neurons and synaptic relations in the lateral superior olive of the cat: normal structure and experimental observations. Acta Morphol Hung 38: 207–215.

    PubMed  CAS  Google Scholar 

  • Masterton B, Thompson GC, Bechtold JK, RoBards MT (1975) Neuroanatomical basis of binaural phase-difference analysis for sound localization: a comparative study. J Comp Physiolog Psychol 89: 379–386.

    CAS  Google Scholar 

  • Matsubara JA (1990) Calbindin D-28K immunoreactivity in the cat’s superior olivary complex. Brain Res 508: 353–357.

    PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (1996) Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hear Res 97: 136–152.

    PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Shackleton TM, Palmer AR (1998) Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. J Neurosci 18: 6026–6039.

    PubMed  CAS  Google Scholar 

  • McFadden D, Pasanen EG (1976) Lateralization at high frequencies based on inter-aural time differences. J Acoust Soc Am 59: 634–639.

    PubMed  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246. Mills A (1960) Lateralization of high-frequency tones. J. Acoust Soc Am 32: 132–134.

    Google Scholar 

  • Monsivais P, Yang L, Rubel EW (2000) GABAergic inhibition in nucleus magnocellularis: implications for phase locking in the avian auditory brainstem. J Neurosci 20: 2954–2963.

    PubMed  CAS  Google Scholar 

  • Moore CN, Casseday JH, Neff WD (1974) Sound localization: The role of the commissural pathways of the auditory system of the cat. Brain Res 82: 13–26.

    PubMed  CAS  Google Scholar 

  • Moore DR (1988) Auditory brainstem of the ferret: sources of projections to the inferior colliculus. J Comp Neurology 269: 342–354.

    CAS  Google Scholar 

  • Moore DR, Russell FA, Cathcart NC (1995) Lateral superior olive projections to the inferior colliculus in normal and unilaterally deafened ferrets. J Comp Neurol 357: 204–216.

    PubMed  CAS  Google Scholar 

  • Moore MJ, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3: 237–242.

    PubMed  CAS  Google Scholar 

  • Morest DK (1968) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9: 288–311.

    PubMed  CAS  Google Scholar 

  • Morest DK (1973) Auditory neurons of the brainstem. Adv Otorhinolaryngol 20: 337–356.

    PubMed  CAS  Google Scholar 

  • Moushegian G, Rupert A, Whitcomb MA (1964) Brain-stem neuronal response patterns to monaural and binaural tone. J Neurophysiol 27: 1174–1191.

    PubMed  CAS  Google Scholar 

  • Moushegian G, Rupert AL, Gidda JS (1975) Functional characteristics of superior olivary neurons to binaural stimuli. J Neurophysiol 38: 1037–1048.

    PubMed  CAS  Google Scholar 

  • Nuetzel J, Hafter E (1976) Lateralization of complex waveforms: effects of fine structure, amplitude, and duration. J Acoust Soc Am 60: 1339–1346.

    PubMed  CAS  Google Scholar 

  • Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J Neurosci 3: 2043–2053.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Beckius GE, Shneiderman A (1995) Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography. J Comp Neurol 360: 17–32.

    PubMed  CAS  Google Scholar 

  • Ostapoff EM, Benson CG, Saint Marie RL (1997) GABA- and glycineimmunoreactive projections from the superior olivary complex to the cochlear nucleus in guinea pig. J Comp Neurol 381: 500–512.

    PubMed  CAS  Google Scholar 

  • Palmer AR (1982) Encoding of rapid amplitude fluctuations by cochlear-nerve fibres in the guinea-pig. Arch Otorhinolaryngol 236: 197–202.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Winter IM, Darwin CJ (1986) The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons. J Acoust Soc Am 79: 100–113.

    PubMed  CAS  Google Scholar 

  • Park TJ, Grothe B, Pollak GD, Schuller G, Koch U (1996) Neural delays shape selectivity to interaural intensity differences in the lateral superior olive. J Neurosci 16: 6554–6566.

    PubMed  CAS  Google Scholar 

  • Park TJ, Monsivais P, Pollak GD (1997) Processing of interaural intensity differences in the LSO: role of interaural threshold differences. J Neurophysiol 77: 2863–2878.

    PubMed  CAS  Google Scholar 

  • Perkins RE (1973) An electron microscopic study of synaptic organization in the medial superior olive of normal and experimental chinchillas. J Comp Neurol 148: 387–415.

    PubMed  CAS  Google Scholar 

  • Peyret D, Campistron G, Geffard M, Aran JM (1987) Glycine immunoreactivity in the brainstem auditory and vestibular nuclei of the guinea pig. Acta Otolaryngol 104: 71–76.

    PubMed  CAS  Google Scholar 

  • Pfeiffer RR (1966) Anteroventral cochlear nucleus: wave forms of extracellularly recorded spike potentials. Science 154: 667–668.

    PubMed  CAS  Google Scholar 

  • Pollak GD (1988) Time is traded for intensity in the bat’s auditory system. Hear Res 36: 107–124.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1909) Histologie du Systeme Nerveux de l’Homme et des Vertebrates, Vol. I. pp. 754–838. Madrid: Instituto Ramon y Cajal.

    Google Scholar 

  • Rayleigh US (1907) On our perception of sound direction. Philos Mag 6: 214–232.

    Google Scholar 

  • Reed MC, Blum JJ (1990) A model for the computation and encoding of azimuthal information by the lateral superior olive. J Acoust Soc Am 88: 1442–1453.

    PubMed  CAS  Google Scholar 

  • Rhode WS, Kettner RE (1987) Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat. J Neurophysiol 57: 414–442.

    PubMed  CAS  Google Scholar 

  • Rietzel HJ, Friauf E (1998) Neuron types in the rat lateral superior olive and developmental changes in the complexity of their dendritic arbors. J Comp Neurol 390: 20–40.

    PubMed  CAS  Google Scholar 

  • Roberts RC, Ribak CE (1987) GABAergic neurons and axon terminals in the brain-stem auditory nuclei of the gerbil. J Comp Neurol 258: 267–280.

    PubMed  CAS  Google Scholar 

  • Rose JE, Gross NB, Geisler CD, Hind JE (1966) Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J Neurophysiol 29: 288–314.

    PubMed  CAS  Google Scholar 

  • Rose JE, Kitzes LM, Gibson MM, Hind JE (1974) Observations on phase-sensitive neurons of anteroventral cochlear nucleus of the cat: nonlinearity of cochlear output. J Neurophysiol 37: 218–253.

    PubMed  CAS  Google Scholar 

  • Roth GL, Aitkin LM, Andersen RA, Merzenich MM (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 182: 661–680.

    PubMed  CAS  Google Scholar 

  • Rothman JS, Young ED (1996) Enhancement of neural synchronization in computational models of ventral cochlear nucleus bushy cells. Aud Neurosci 2: 47–62.

    Google Scholar 

  • Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol 70: 2562–2583.

    PubMed  CAS  Google Scholar 

  • Sachs M, Abbas P (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56: 1835–1847.

    PubMed  CAS  Google Scholar 

  • Saint Marie RL, Morest DK, Brandon CJ (1989a) The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hear Res 42: 97–112.

    Google Scholar 

  • Saint Marie RL, Ostapoff E-M, Morest DK, Wenthold RJ (1989b) Glycine immunoreactive projection of the cat lateral superior olive: possible role in mid-brain ear dominance. J Comp Neurol 279: 382–396.

    Google Scholar 

  • Sanes DH (1990) An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive. J Neurosci 10: 3494–3506.

    PubMed  CAS  Google Scholar 

  • Sanes DH (1993) The development of synaptic function and integration in the central auditory system. J Neurosci 13: 2627–2637.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Friauf E (2000) Development and influence of inhibition in the lateral superior olivary nucleus. Hear Res 147: 46–58.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Siverls V (1991) Development and specificity of inhibitory terminal arborizations in the central nervous system. J Neurobiol 22: 837–854.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Takacs C (1993) Activity-dependent refinement of inhibitory connections. Eur J Neurosci 5: 570–574.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Wooten GF (1987) Development of glycine receptor distribution in the lateral superior olive of the gerbil. J Neurosci 7: 3803–3811.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Geary WA, Wooten GF, Rubel EW (1987) Quantitative distribution of the glycine receptor in the auditory brainstem of the gerbil. J Neurosci 7: 3793–3802.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Goldstein NA, Ostad M, Hillman DE (1990) Dendritic morphology of central auditory neurons correlates with their tonotopic position. J Comp Neurol 294: 443–454.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Markowitz S, Bernstein J, Wardlow J (1992) The influence of inhibitory afferents on the development of postsynaptic dendritic arbors. J Comp Neurol 321: 637–644.

    PubMed  CAS  Google Scholar 

  • Scheibel M, Scheibel A (1974) Neuropile organization in the superior olive of the cat. Exp Neurol 43: 339–348.

    PubMed  CAS  Google Scholar 

  • Schwartz IR (1972) Axonal endings in the cat medial superior olive: coated vesicles and intercellular substance. Brain Res 46: 187–202.

    PubMed  CAS  Google Scholar 

  • Schwartz IR (1977) Dendritic arrangements in the cat medial superior olive. Neurosci 2: 81–101.

    CAS  Google Scholar 

  • Schwartz IR (1980) The differential distribution of synaptic terminal on marginal and central cells in the cat medial superior olivary nucleus. Am J Anat 159: 25–31.

    PubMed  CAS  Google Scholar 

  • Schwartz IR (1984) Axonal organization in the cat medial superior olivary nucleus. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press. pp. 99–129.

    Google Scholar 

  • Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag. pp. 117–167.

    Google Scholar 

  • Shneiderman A, Henkel CK (1985) Evidence of collateral axonal projections to the superior olivary complex. Hear Res 19: 199–205.

    PubMed  CAS  Google Scholar 

  • Smith DJ, Rubel EW (1979) Organization and development of brainstem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186: 213–239.

    PubMed  CAS  Google Scholar 

  • Smith PH (1995) Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J Neurophysiology 73: 1653–1667.

    CAS  Google Scholar 

  • Smith PH, Rhode WS (1987) Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J Comp Neurol 266: 360–375.

    PubMed  CAS  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TCT (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304: 387–407.

    PubMed  CAS  Google Scholar 

  • Smith PH, Joris PX, Yin TCT (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331: 245–260.

    PubMed  CAS  Google Scholar 

  • Smith PH, Joris PX, Yin TCT (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79: 3127–3142.

    PubMed  CAS  Google Scholar 

  • Smith RL, Brachman ML (1980) Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity. Hear Res 2: 123–133.

    PubMed  CAS  Google Scholar 

  • Smolders JW, Klinke R (1986) Synchronized responses of primary auditory fibre-populations in Caiman crocodilus(L.) to single tones and clicks. Hear Res 24: 89–103.

    PubMed  CAS  Google Scholar 

  • Sommer I, Lingenhohl K, Friauf E (1993) Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp Brain Res 95: 223–239.

    PubMed  CAS  Google Scholar 

  • Spangler KM, Warr WB, Henkel CK (1985) The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J Comp Neurol 238: 249–262.

    PubMed  CAS  Google Scholar 

  • Spirou GA, Berrebi AS (1997) Glycine immunoreactivity in the lateral nucleus of the trapezoid body of the cat. J Comp Neurol 383: 473–488.

    PubMed  CAS  Google Scholar 

  • Spirou GA, Brownell WE, Zidanic M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 63: 1169–1190.

    PubMed  CAS  Google Scholar 

  • Spitzer MW, Semple MN (1995) Neurons sensitive to interaural phase disparity in gerbil superior olive: diverse monaural and temporal response properties. J Neurophysiol 73: 1668–1690.

    PubMed  CAS  Google Scholar 

  • Stevens S, Newman E (1936) The localization of actual sources of sound. Amer J Psychol 48: 297–306.

    Google Scholar 

  • Stotler WA (1953) An experimental study of the cells and connections of the superior olivary complex of the cat. J Comp Neurol 98: 401–432.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Konishi M (1986) Selectivity for interaural time difference in the owl’s midbrain. J Neurosci 6: 3413–3422.

    PubMed  CAS  Google Scholar 

  • Taschenberger H, von Gersdorff H (2000) Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J Neurosci 20: 9162–9173.

    PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303: 267–285.

    PubMed  CAS  Google Scholar 

  • Thompson GC, Masterton RB (1978) Brainstem auditory pathways involved in reflexive head orientation to sound. J Neurophysiol 41: 1183–1202.

    PubMed  CAS  Google Scholar 

  • Thompson GC, Cortez AM, Lam DM (1985) Localization of GABA immuno-reactivity in the auditory brainstem of guinea pigs. Brain Res 339: 119–122.

    PubMed  CAS  Google Scholar 

  • Thompson SP (1882) On the function of the two ears in the perception of space. Philos Mag 13: 406–416.

    Google Scholar 

  • Tolbert L, Morest D, Yurgelun-Todd D (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Horseradish peroxidase labelling of identified cell types. Neurosci 7: 3031–3052.

    CAS  Google Scholar 

  • Tollin DJ, Joris PX, Yin TCT (2000) Coding of interaural phase differences in low-frequency cells in the lateral superior olive of the cat. Assoc Res Otolaryngol 23: 113.

    Google Scholar 

  • Tollin DJ, Yin TCT (1999) Spatial receptive fields of cells in the lateral superior olive of the cat. Soc Neurosci 29:267. 13.

    Google Scholar 

  • Trahiotis C, Bernstein LR (1986) Lateralization of bands of noise and sinusoidally amplitude-modulated tones: Effects of spectral locus and bandwidth. J Acoust Soc Am 79: 1950–1957.

    PubMed  CAS  Google Scholar 

  • Tsuchitani C (1977) Functional organization of lateral cell groups of cat superior olivary complex. J Neurophysiol 40: 296–318.

    PubMed  CAS  Google Scholar 

  • Tsuchitani C (1997) Input from the medial nucleus of trapezoid body to an inter-aural level detector. Hear Res 105: 211–224.

    PubMed  CAS  Google Scholar 

  • Tsuchitani C, Boudreau JC (1966) Single unit analysis of cat superior olive S segment with tonal stimuli. J Neurophysiol 29: 684–697.

    PubMed  CAS  Google Scholar 

  • Van Adel BA, Kelly JB (1998) Kainic acid lesions of the superior olivary complex: effects on sound localization by the albino rat. Behav Neurosci 112: 432–446.

    PubMed  Google Scholar 

  • Van Gisbergen JA, Grashuis JL, Johannesma PI, Vendrik AJ (1975) Neurons in the cochlear nucleus investigated with tone and noise stimuli. Exp Brain Res 23: 387–406.

    PubMed  Google Scholar 

  • Van Noort JV (1969) The structure and connections of the inferior colliculus. An investigation of the lower auditory system. pp. 1–118.

    Google Scholar 

  • Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509: 183–194.

    PubMed  CAS  Google Scholar 

  • Wang X, Sachs MB (1994) Neural encoding of single-formant stimuli in the cat. II. Responses of anteroventral cochlear nucleus units. J Neurophysiol 71: 59–78.

    PubMed  CAS  Google Scholar 

  • Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14: 453–474.

    PubMed  CAS  Google Scholar 

  • Warr WB (1972) Fiber degeneration following lesions in the multipolar and globular cell areas in the ventral cochlear nucleus of the cat. Brain Res 40: 247–270.

    PubMed  CAS  Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Fay RR, Popper A (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer Verlag. pp. 410–448.

    Google Scholar 

  • Webster WR, Batini C, Buisseret-Delmas C, Compoint C, Guegan M, Thomasset M (1990) Colocalization of calbindin and GABA in medial nucleus of the trapezoid body of the rat. Neurosci Lett 111: 252–257.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neuroscience 22: 897–912.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 276: 423–435.

    PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1992) The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 91: 1648–1661.

    PubMed  CAS  Google Scholar 

  • Winter IM, Palmer AR (1990) Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hear Res 44: 161–178.

    PubMed  Google Scholar 

  • Wu SH, Kelly JB (1991) Physiological properties of neurons in the mouse superior olive: membrane characteristics and postsynaptic responses studied in vitro. J Neurophysiol 65: 230–246.

    PubMed  CAS  Google Scholar 

  • Wu SH, Kelly JB (1992) Synaptic pharmacology of the superior olivary complex studied in mouse brain slice. J Neurosci 12: 3084–3097.

    PubMed  CAS  Google Scholar 

  • Wu SH, Kelly JB (1994) Physiological evidence for ipsilateral inhibition in the lateral superior olive: synaptic responses in mouse brain slice. Hear Res 73: 57–64.

    PubMed  CAS  Google Scholar 

  • Wu SH, Oertel D (1986) Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. J Neurosci 6: 2691–2706.

    PubMed  CAS  Google Scholar 

  • Yin TCT (1994) Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat. J Neurosci 14: 5170–5186.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JC (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64: 465–488.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S (1983a) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J Neurophysiol 50: 1000–1019.

    CAS  Google Scholar 

  • Yin TCT, Kuwada S (1983b) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. J Neurophysiol 50: 1020–1042.

    CAS  Google Scholar 

  • Yin TCT, Kuwada S, Sujaku Y (1984) Interaural time sensitivity of high-frequency neurons in the inferior colliculus. J Acoust Soc Am 76: 1401–1410.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Hirsch JA, Chan JC (1985) Responses of neurons in the cat’s superior colliculus to acoustic stimuli. II. A model of interaural intensity sensitivity. J Neurophysiol 53: 746–758.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JCK, Irvine DRF (1986) Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. I. Responses to wide-band noise. J Neurophysiol 55: 280–300.

    PubMed  CAS  Google Scholar 

  • Young ED, Robert JM, Shofner WP (1988) Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 60: 1–29.

    PubMed  CAS  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3: 1373–1378.

    PubMed  CAS  Google Scholar 

  • Zacksenhouse M, Johnson DH, Tsuchitani C (1992) Excitatory/inhibitory inter- action in the LSO revealed by point process modeling. Hear Res 62: 105–123.

    PubMed  CAS  Google Scholar 

  • Zook JM, Leake PA (1989) Connections and frequency representation in the auditory brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol 290: 243–261.

    PubMed  CAS  Google Scholar 

  • Zwislocki J, Feldman R (1956) Just noticeable differences in dichotic phase. J Acoust Soc Am 28: 860–886.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yin, T.C.T. (2002). Neural Mechanisms of Encoding Binaural Localization Cues in the Auditory Brainstem. In: Oertel, D., Fay, R.R., Popper, A.N. (eds) Integrative Functions in the Mammalian Auditory Pathway. Springer Handbook of Auditory Research, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3654-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3654-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3183-2

  • Online ISBN: 978-1-4757-3654-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics