Skip to main content

Introduction to the testing of integrated circuits

  • Chapter
Thermal Testing of Integrated Circuits
  • 212 Accesses

Abstract

Today’s electronic technology is based on the design and manufacture of integrated circuits. The concept of the integrated circuit comes from the work of 2000 Nobel Prize winner J.S. Kilby [1]. Its origins can be dated to February 1959. In his patent declaration, Kilby defines the integrated circuit with the following statement: “this invention relates to miniature electronic circuits, and more particularly to unique integrated electronic circuits fabricated from semiconductor material”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kilby, J.S., “The integrated circuit’s early history”, Proceedings IEEE, vol. 88, no. 1, January 2000, pp. 109–111.

    Article  Google Scholar 

  2. Tsividis, Yannis P, “Operation and modelling of the MOS transistor”, McGraw Hill, 1989.

    Google Scholar 

  3. Uyemura, J.P., “Fundamentals of MOS digital integrated circuits”, Addisson-Wesley, 1988.

    Google Scholar 

  4. Pidin, S. et al., “Experimental and simulation study on sub-50nm CMOS design”, Proceedings Symposium on VLSI Technology 2001, pp. 35–36.

    Google Scholar 

  5. Bondypadhyay, P.K., “Moore’s law governs the silicon revolution”, Proceedings IEEE, vol. 86, no. 1, January 1998, pp. 78–81.

    Article  Google Scholar 

  6. Hamilton, S., “Taking Moore’s law into the next century”, Computer, vol. 32, no. 1, January 1999, pp. 43–48.

    Article  Google Scholar 

  7. Sze, S.M., “Physics of Semiconductor Devices”, New York, Wiley, 1981.

    Google Scholar 

  8. Asano, K. et al., “Patterning sub-30nm MOSFET gate with i-line lithography”, IEEE Transactions on Electron Devices, vol. 48, no. 5, May 2001, pp. 1004–1006.

    Article  Google Scholar 

  9. Segura, J.A. and Rubio, A., “A detailed analysis of CMOS SRAMS with gate oxide shorts defects”, IEEE Journal Solid State Circuits, vol. 32, no. 10, October 1997, pp. 1543–1550.

    Article  Google Scholar 

  10. Renovell, M. et al., “Boolean and current detection of MOS transistor with gate oxide shorts”, Proceedings International Test Conference 2001, pp. 1039–1048.

    Google Scholar 

  11. Semenov, O. and Sachdev, M., “Impact of technology scaling on bridging fault detection in sequential and combinational CMOS circuits”, Proceedings International Workshop on Defect Based Testing 2000, pp. 36–42.

    Google Scholar 

  12. Rodriguez-Montanés,R., Bruis, E.M.J.G. and Figueras, J., “Bridging defects resistance measurements in a CMOS process”, Proceedings International Test Conference 1992, p. 892.

    Google Scholar 

  13. Champac, V.H., Figueras, J. and Rubio, A., “Electrical model of the floating gate defect in CMOS IC’s: implications on Iddq testing”, IEEE Transactions on Computer-AidedDesign of Circuits and Systems, vol. 13, no. 3, March 1994, pp. 359–369.

    Article  Google Scholar 

  14. Segura, J. et al., “Quiescent current analysis and experimentation of defective CMOS circuits”, Journal of Electronic Testing: Theory and Application,3, 337–348(1992), Kluwer Academic Publishers.

    Google Scholar 

  15. Segura, J. et al., “A detailed analysis and electrical modeling of gate oxide shorts in MOS transistors”, Journal of Electronic Testing: Theory and Application,8, 229–239(1996), Kluwer Academic Publishers.

    Google Scholar 

  16. Avizienis, A. and Laprie, J.C., “Dependable computing: from concepts to design diversity”, Proceedings of the IEEE, vol. 74, no. 8, May 1986.

    Google Scholar 

  17. Abramovici, M., Breuer, M.A. and Friedman, A.D., Digital Systems Testing and Reliable Design, Computer Science Press, 1990.

    Google Scholar 

  18. Abraham, J A and Fuchs, W.K., “Fault and error models for VLSI”, Proceedings of the IEEE, vol. 74, no. 5, May 1986.

    Google Scholar 

  19. Breuer, M.A. and Friedman, A.D., “Diagnosis and reliable design of digital systems”, Computer Science-Press, Washington DC 1976.

    Google Scholar 

  20. Wadsack, R.L., “Fault modelling and logic simulation of CMOS and MOS integrated circuits”, Bell System Technology Journal, pp. 1449–1474, May-June 1978.

    Google Scholar 

  21. Abraham, J.A. and Parker, K.P., “Practical Microprocessor Testing: Open and closed loops approaches”, Proc. COMPCON Spring 1981, pp. 308–311, February 1981.

    Google Scholar 

  22. Sharma, M. and Patel, J.H., “Testing of critical paths for delay faults”, Proceedings of the International Test Conference 2001, pp. 634–641.

    Google Scholar 

  23. Tyszer, J., “Testing of three-stage switching networks for coupling faults”, IEEE Transactions on Communications, vol. 40. no. 2, Feb. 1992, pp. 413–422.

    Article  MATH  Google Scholar 

  24. Kuo-Liang Cheng; Ming-Fu Tsai; Cheng-Wen Wu, “Efficient neighborhood pattern-sensitive fault test algorithms for semiconductor memories”, IEEE Proceedings VLSI Test Symposium 2001, pp. 225–230.

    Google Scholar 

  25. Rubio, A.; Itazaki, N.; Xu, X.; Kinoshita, K., “An approach to the analysis and detection of crosstalk faults in digital VLSI circuits”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 3, March 1994, pp. 387–395.

    Article  Google Scholar 

  26. Milne, A.; Taylor, D.; Saunders, J.; Talbot, A.D., “Generation of optimised fault lists for simulation of analogue circuits and test programs”, IEE Proceedings Circuits, Devices and Systems, vol. 146, no. 6, Dec. 1999, pp. 355–360.

    Article  Google Scholar 

  27. Gulati, R.K. and Hawkins, C.F. editors, “IDDQ testing of VLSI circuits”, Kluwer Academic Publishers, 1993.

    Google Scholar 

  28. McCluskey, E.J., “Logic Design Principles: with emphasis on testable semicustom circuits”, Prentice Hall International, 1986.

    Google Scholar 

  29. Fujiwara, H., “Logic testing and design for testability”, The MIT Press, 1985.

    Google Scholar 

  30. Chujen Lin; Haynes, L.; Mandava, P.; Prasad, P., “Automatic BIST design tool for mixed-signal circuits”, AUTOTESTCON ‘88 IEEE Systems Readiness Technology Conference, 1998 IEEE, pp. 97–102.

    Google Scholar 

  31. Roth, J.P., “Computer logic, testing and verification”, Computer Science Press, Rockville, Maryland, 1980.

    MATH  Google Scholar 

  32. Fujiwara, H. and Shimono, T., “On the acceleration of test pattern generation algorithms”, IEEE Transactions on Computers, vol. C-32, no. 12, pp. 1137–1144, December 1983.

    Article  Google Scholar 

  33. Schulz, M.H. et al., “Improved deterministic test pattern generation with applications to redundancy identification”, IEEE Transactions on Computer-Aided-Design, vol. 8, no. 7, pp. 811–816, July 1989.

    Article  Google Scholar 

  34. Franklin, M.; Saluja, K.K.; Kinoshita, K., “Design of a BIST RAM with row/column pattern sensitive fault detection capability”, Proceedings International Test Conference, 1989, pp. 327–336.

    Google Scholar 

  35. Mohammad, M.Gh.; Saluja, K.K.; Yap, A., “Testing flash memories”, Thirteenth International Conference on VLSI Design, 2000, pp. 406–411.

    Google Scholar 

  36. Das, D.K.; Bhattacharya, B.B.; Ohtake, S.; Fujiwara, H., “Testable design of sequential circuits with improved fault efficiency”, Fourteenth International Conference on VLSI Design, 2001, pp. 128–133.

    Google Scholar 

  37. Heragu, K.; Patel, J.H.; Agrawal, V.D., “A test generator for segment delay faults”, Proceedings, Twelfth International Conference On VLSI Design, 1999, pp. 484–491.

    Google Scholar 

  38. Wangning Long; Zhongchen Li; Shiyuan Yang; Yinghua Min, “Memory efficient ATPG for path delay faults”, Proceedings Test Symposium, 1997, pp. 326–331.

    Google Scholar 

  39. Kondo, H.; Kwang-Ting Cheng, “An efficient compact test generator for I/sub DDQ/ testing”, Proceedings of the Fifth Asian Test Symposium, 1996, pp. 177–182.

    Google Scholar 

  40. Isern, E.; Figueras, J., “Test generation with high coverage for quiescent current test of bridging faults in combinational circuits”, Proceedings International Test Conference, 1993, pp. 73–82.

    Google Scholar 

  41. IEEE standard test access port and boundary-scan architecture, IEEE Std 1149.1–2001.

    Google Scholar 

  42. IEEE standard for a mixed-signal test bus, IEEE Std 1149. 4–1999, 28 March 2000.

    Google Scholar 

  43. Konemann, P., Mucha, J. and Zwiehoff, G., “Built-in logic block observation technique”, Proceedings of the IEEE Test Conference, 1979.

    Google Scholar 

  44. Varma, P., Ambler, A.P. and Baker, K., “An analysis of the economics of self test”, Proceedings of the IEEE Test Conference, 1984.

    Google Scholar 

  45. Bernard, S.; Azais, F.; Bertrand, Y.; Renovell, M., “Analog BIST generator for ADC testing”, IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2001, pp. 338–346.

    Google Scholar 

  46. Seongwon Kim; Soma, M., “An all-digital built-in self-test for high-speed phase-locked loops”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 2, Feb. 2001, pp. 141–150.

    Article  Google Scholar 

  47. Peralias, E.J.; Huertas, G.; Rueda, A.; Huertas, J.L, “Self-testable pipelined ADC with low hardware overhead”, IEEE Proceedings on VLSI Test Symposium, 2001, pp. 272–277.

    Google Scholar 

  48. Turino, J., “Test economics in the 21st century”, IEEE Design and Test of Computers, July-September 1997, pp. 41–44.

    Google Scholar 

  49. Ungar, L.Y. and Ambler, T., “Economics of built-in self-test”, IEEE Design and Test of Computers, September-October 2001, pp. 70–79.

    Google Scholar 

  50. Zorian, Y., Dey, S. and Rodgers, M.J., “Test of future System-On-Chips”, Proceedings of the International Conference on Computer Aided Design, 2000, pp. 392–398.

    Google Scholar 

  51. Lee, T.H. and Wong, S.S., “CMOS RF Integrated Circuits at 5 GHz and Beyond”, Proceedings of the IEEE, vol. 88, no. 10, October 2000, pp. 1560–1571.

    Article  Google Scholar 

  52. Pynn, C.T., “Analyzing Manufacturing Test Costs”, IEEE Design and Test of Computers, July-September 1997, pp. 36–41.

    Google Scholar 

  53. Rajsuman, R., “Iddq testing for CMOS VLSI”, Proceedings of the IEEE, vol. 88, no. 4, April 2000, pp. 544–566.

    Article  Google Scholar 

  54. Kundu, S., “Iddq defect detection in deep sub-micron CMOS ICs”, Proceedings of the Asian Test Symposium, 1998, pp. 150–152.

    Google Scholar 

  55. Zarrinfar, F. and Rajsuman, R., “Automated Iddq testing from CAD to manufacturing”, Proceedings International Workshop on Iddq testing“, 1995, pp. 48–51.

    Google Scholar 

  56. Hawkins, C.F. et al., “Quiescent power supply current measurements for CMOS IC defect detection”, IEEE Transactions on Industrial Electronics, May 1989, pp. 211–218.

    Google Scholar 

  57. Cusey, J.P. and Patel, J.H., “BART: A bridging fault test generator for sequential circuits”, Int. Test Conference, 1997, pp. 823–832.

    Google Scholar 

  58. Mao, W. et al., Quietest: A quiescent current testing methodology for detecting leakage faults“, Int. Conf. Computer Aided Design, 1990, pp. 280–283.

    Google Scholar 

  59. Rullan, M. et al., “Analysis of Issq/Iddq testing implementation and circuit partitioning in CMOS cell based design”, European Design and Test Conference, 1996, pp. 584–588.

    Google Scholar 

  60. Sah, C.T., “Characteristics of the Metal-Oxide-Semiconductors Transistors”, IEEE Trans. Electron Devices, ED-11, 324, 1964.

    Google Scholar 

  61. Proc. Int. Technology Roadmap for semiconductor, November 1999.

    Google Scholar 

  62. Szekely, V.; Rencz, M.; Torok, S.; Courtois, B., “Cooling as a possible way to extend the usability of I/sub DDQ/ testing”, Electronics Letters, Volume: 33 Issue: 25, 4 Dec. 1997, pp. 2117–2118.

    Article  Google Scholar 

  63. Singer, G., “The future of test and DFT”, IEEE Design and Test, July-September 1997, pp. 11–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Altet, J., Rubio, A. (2002). Introduction to the testing of integrated circuits. In: Thermal Testing of Integrated Circuits. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3635-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3635-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5287-5

  • Online ISBN: 978-1-4757-3635-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics