Macroanatomical Findings in Postmortem Brain Tissue from Schizophrenic Patients

  • Peter Falkai
Part of the Neurobiological Foundation of Aberrant Behaviors book series (NFAB, volume 4)


The macroscopic study of the postmortem brain in schizophrenia has revealed changes in area, volume and shape measures in several cortical and subcortical regions. There seems to be an overall subtle reduction of whole brain volume (about 3%), accompanied by increased area/volume of the ventricular system and a more regionalised volume loss in the temporal lobe, especially the hippocampus and entorhinal cortex (about 5–10%). Looking at other cortical regions the frontal and parietal lobe reveal changes which are more subtle compared to the temporal cortex. Subcortically the thalamus demonstrates volume reduction (about 10–15%) comparable to limbic system structures. Beside this the cerebellum and the basal ganglia show volume/area changes awaiting replication. Although the introduction of structural imaging has been very helpful in replicating and enlarging on these macroscopic findings, imaging will never replace postmortem studies because of its limited resolution and refusing access to the microscopic neurobiology of schizophrenia.


Temporal Lobe Corpus Callosum Schizophrenic Patient Superior Temporal Gyrus Postmortem Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altshuler LL, Conrad A, Kovelman JA, Scheibel A. Hippocampal pyramidal cell orientation in schizophrenia. A controlled neurohistologic study of the Yakovlev collection. Arch Gen Psychiatry 1987; 44: 1094–1098.PubMedCrossRefGoogle Scholar
  2. Alzheimer A. Beiträge zur pathologischen Anatomie der Hirnrinde und zur anatomischen Grundlage einiger Psychosen. Mschr. Psychiat. Neurol. 1897; 2: 82–120.CrossRefGoogle Scholar
  3. Bilder RM, Houwei W, Bogerts B, Degreef G, Ashtari M, Alvir JMJ et al. Absence of regional hemispheric asymmetries in first-episode schizophrenia. Am J Psychiatry 1994; 151: 1437–1447.PubMedGoogle Scholar
  4. Bogerts B, Häntsch J, Heizer M. A morphometric study of the dopamine containing cell groups in the mesencephalon of normals, Parkinson patients and schizophrenics. Biol Psychiatry 1983; 18: 951–960.Google Scholar
  5. Bogerts B, Meertz E, Schönfeld-Bausch R. Morphometrische Untersuchungen an Gehirnen Schizophrener. 2. Kongr. Dtsch. Ges. Biol. Psychiat. Hrsg. von Hopf A. Biologische Psychiatrie. Springer Berlin 1984; 227–233.Google Scholar
  6. Bogerts B, Meertz E, Schönfeldt-Bausch R. Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 1985; 42: 784–791.PubMedCrossRefGoogle Scholar
  7. Bogerts B, Falkai P, Tutsch J. cell numbers in the pallidum and hippocampus of schizophrenics. In Shagass C. et al Biol Psychiatry Elsevier-North Holland Amsterdam 1986; 1178–1180.Google Scholar
  8. Bogerts B, Ashtari M, Degreef G, Alvir JMJ, Bilder RM, Liebermann JA. Reduced temporal limbic structure volumes on magnetic resonance images in first-episode schizophrenia. Psychiat Res Neuroimaging 1990; 35: 1–13.CrossRefGoogle Scholar
  9. Brown R, Colter N, Corsellis JAN et al. Postmortem evidence of structural brain changes in schizophrenia. Arch Gen Psychiatry 1986; 43: 36–42.PubMedCrossRefGoogle Scholar
  10. Chakos MH, Liebermann JA, Bilder RM, Borenstein M, Lerner G, Bogerts B, Wu H, Kinon B, Ashtari M. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 1994; 151: 1430–1436.PubMedGoogle Scholar
  11. Chance SA, Highley JR, Esiri M.M, Crow TJ. Fiber Content of the Fomix in Schizophrenia: Lack of Evidence for a Primary Limbic Encephalopathy. Am J Psychiatry 1999; 156: 1720–1724.PubMedGoogle Scholar
  12. Colter N, Battal S, Crow TJ, Johnstone EC, Brown R, Bruton C. White matter reduction in the parahippocampal gyros of patients with schizophrenia (letter). Arch Gen Psychiatry 1987; 44: 1023.PubMedCrossRefGoogle Scholar
  13. Crichton-Brown J. On the weight of the brain and ist component parts in the insane. Brain 1874; 2: 42–67.CrossRefGoogle Scholar
  14. Crow Ti, Ball J, Bloom SR, et al. Schizophrenia as an anomaly of development of cerebral asymmetry. A postmortem study and a proposal concerning the genetic basis of the disease. Arch Gen Psychiatry 1989; 46: 1145–1150.Google Scholar
  15. Danos P, Baumann B, Bernstein HG, Franz M, Stauch R, Northoff G, Krell D, Falkai P, Bogerts B. Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immuno reactive thalamocortical projection neurons. Psychiatry Res 1998; 82 (1): 1–10.PubMedCrossRefGoogle Scholar
  16. Degreef G, Bogerts B, Falkai P, Greve B, Lantos G, Ashtari M, Liebermann J. Increased prevalence of the cavuum septum pellucidum in MRI scans and postmortem brains of schizophrenic patients. Psychiatry Res 1992; 45: 1–13.PubMedCrossRefGoogle Scholar
  17. Dwork AJ. Postmortem studies of the hippocampal formation in schizophrenia. Schizophr Bull 1997; 23: 385–402.PubMedCrossRefGoogle Scholar
  18. Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. Europ Arch Psychiat neurol Sci 1986; 236: 154–161.CrossRefGoogle Scholar
  19. Falkai P, Bogerts B, Rozumek M. Limbic pathology in schizophrenia: the entorhinal region-a morphometric study. Biol Psychiatry 1988; 24: 515–521.PubMedCrossRefGoogle Scholar
  20. Falkai P, Bogerts B, Schneider T, Greve B, Pfeiffer U, Pilz K, Gonsiorzcyk C, Majtenyi C, Ovary I. Disturbed planum temporale asymmetry in schizophrenia: a quantitative postmortem study. Schizophr Res 1995; 14: 161–176.PubMedCrossRefGoogle Scholar
  21. Falkai P, Schneider T, Greve B, Klieser E, Bogerts B. Reduced frontal and occipital lobe assymetry on the CT scans of schizophrenic patients: ist specificity and clinical significance. J Neural Transm Gen Sect 1995; 99: 63–77.PubMedCrossRefGoogle Scholar
  22. Falkai P, Schneider-Axmann T, Honer WG. Entorhinal cortex pre-alpha cell clusters in Schizophrenia: quantitative evidence of a developmental abnormality. Biol. Psychiatry 2000; 47 (11): 937–43.PubMedCrossRefGoogle Scholar
  23. Highley JR, Esiri MM, McDonald B, Cooper SJ, Crow TJ. Temporal-lobe length is reduced, and gyral folding is increased in schizophrenia: a postmortem study. Schizophr Res 1998; 34: 1–12.PubMedCrossRefGoogle Scholar
  24. Highley JR, Esiri MM, McDonald B, Cortina-Borja M, Cooper SJ, Herron BM, Crow TJ. Anomalies of cerebral asymmetry in schizophrenia interact with gender and age of onset: a postmortem study. Schizophr Res 1998; 34: 13–25.PubMedCrossRefGoogle Scholar
  25. Highley J.R., Esiri M.M., McDonald B., Roberts H.C., Walker M.A., Crow T.J. The Size and Fibre Composition of the Anterior Commissure with Respect to Gender and Schizophrenia. Biol Psychiatry 1999; 45; 1120–1127.PubMedCrossRefGoogle Scholar
  26. Highley RJ, Esiri MM, McDonald B, Cortina-Borja M, Herron BM, Crow Ti. The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a postmortem study. Brain 1999; 122: 99–110.PubMedCrossRefGoogle Scholar
  27. Hillboom E. Schizophrenia-like psychoses after brain trauma. Acta psychiat neurol scand 1954; 60: 36–47.Google Scholar
  28. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26 (1): 93–96.PubMedCrossRefGoogle Scholar
  29. Jeste DV, Lohr JB. Hippocampal pathologic findings in schizophrenia. Arch Gen Psychiatry 1989; 46: 1019–1024.PubMedCrossRefGoogle Scholar
  30. Johnstone EC, Crow TJ, Frith CD, Husband J, ‘Creel L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 1976; 2 (7992): 924–926.PubMedCrossRefGoogle Scholar
  31. Kawasaki Y, Vogeley K, Jung V, Tepest R, Hütte H, Schleicher A, Falkai P. Automated image analysis of disturbed cytoarchitecture in Brodmann area 10 in schizophrenia: a postmortem study. Prog Neuropsychopharmacol. Biol Psychiatrie 2000; 24: 1093–1104.Google Scholar
  32. Lawrie SM, Abukmeil SS. Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998; 172: 110–120.PubMedCrossRefGoogle Scholar
  33. Lesch A, Bogerts B. The diencephalon in schizophrenia: Evidence for reduced thickness of the periventricular grey matter. Europ Arch Psychiat neurol Sci 1984; 234: 212–219.CrossRefGoogle Scholar
  34. Lipska BK, Weinberger DR. Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Brain Res Dev Brain Res 1993; 75 (2): 213–222.PubMedCrossRefGoogle Scholar
  35. McDonald B, Highley JR, Walker MA, Herron BM, Cooper SJ, Esiri MM, Crow TJ. Anomalous Asymmetry of Fusiform and Parahippocampal Gyrus Gray Matter in Schizophrenia: A postmortem Study. Am J Psychiatry 2000; 157: 40–47.PubMedGoogle Scholar
  36. Rosen GD, Sherman GF, Galaburda AM. Interhemispheric connections differ between symmetrical and asymmetrical brain regions. Neurosci 1989; 33: 525–533.CrossRefGoogle Scholar
  37. Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–820.PubMedCrossRefGoogle Scholar
  38. Supprian T, Ulmar G, Bauer M, Schüler M, Püschel K, Retz-Junginger P, Schmitt HP, Heinsen H. Cerebellar vermis area in schizophrenic patients-a postmortem study. Schizophr Res 2000; 42: 19–28.PubMedCrossRefGoogle Scholar
  39. Talamini LM, Koch T, Ter Horst GJ, Korf J. Mehylazoxymethanol acetate-induced abnormalities in the entorhinal cortex of the rat; parallels with morphological findings in schizophrenia. Brain Res 1998; 789: 293–306.PubMedCrossRefGoogle Scholar
  40. Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer TA, Bogerts B, Honer WG, Falkai P. Disturbed gyrification of the prefrontal region in male schizophrenic patients: A morphometric postmortem study. Am J Psychiatry 2000; 157 (1): 34–39.PubMedGoogle Scholar
  41. Vogeley K, Tepest R, Pfeiffer U, Schneider-Axmann T, Maier W, Honer WG, Falkai P. Right frontal hypergyria differentiation in affected and unaffected siblings from families multiply affected with schizophrenia: a morphometric MRI study. Am J Psychiatry 2001; 158 (3): 494–496.PubMedCrossRefGoogle Scholar
  42. Woodruff PWR, McManus IC, David A.S. A metaanalysis of corpus callosum size in schizophrenia. J Neurol Neurosurg Psychiatry 1995; 58: 457–461.PubMedCrossRefGoogle Scholar
  43. Wright IC, Rabe-Hesketh S, Woodruff PWR, David AS, Murray RM, Bullmore ET. Meta-Analysis of Regional Brain Volumes in Schizophrenia. Am J Psychiatry 2000; 157: 1625.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Peter Falkai

There are no affiliations available

Personalised recommendations