Skip to main content

Summary of Prefrontal Molecular Abnormalities in the Stanley Foundation Neuropathology Consortium

  • Chapter
Book cover The Postmortem Brain in Psychiatric Research

Part of the book series: Neurobiological Foundation of Aberrant Behaviors ((NFAB,volume 4))

Abstract

Postmortem specimens from the Stanley Foundation Neuropathology Consortium, which contains matched samples from patients with schizophrenia, bipolar disorder, non-psychotic depression, and normal controls (n=15 per group), have been distributed to many research groups around the world. This chapter provides a summary of abnormal markers found in prefrontal cortical areas from this collection between 1997 and 2000. From 69 separate data sets, a total of 17 abnormal markers were identified that pertained to a variety of neural systems and processes including neuronal plasticity, neurotransmission, signal transduction, inhibitory interneuron function, and glial cells. Schizophrenia was associated with the largest number of abnormalities, many of which were also present in bipolar disorder. Major depression was associated with relatively few abnormalities. Most abnormal findings represented a decrease in protein or mRNA levels that could not be fully explained by exposure to psychotropic or illicit drugs or by other confounding variables. It is argued that the abnormal findings are not due to stochastic processes but represent viable markers for independent replication and further study as candidate genes or targets for new treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, Jones EG. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.

    Article  PubMed  Google Scholar 

  • Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, Potkin SG, Sandman CA, Bunney WE Jr, Jones EG. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 1996; 16: 19–30.

    PubMed  Google Scholar 

  • Bayer TA, Schramm M, Feldmann N, Knable MB, Falkai P. Antidepressant drug exposure is associated with mRNA levels of tyrosine receptor kinase B in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24: 881–888.

    Article  PubMed  Google Scholar 

  • Beasley CL, Reynolds GP. Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 1997; 24: 349–355.

    Article  PubMed  Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in small interneurons in prefrontal and cingulated cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991; 48: 996–1001.

    Article  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP. Increased GABA-A receptor binding in superficial layers of cingulated cortex in schizophrenics. J Neurosci 1992; 12: 924–929.

    PubMed  Google Scholar 

  • Caberlotto L, Hurd YL. Reduced neuropeptide Y mRNA expression in the prefrontal cortex of subjects with bipolar disorder. Neuroreport 1999; 10: 1747–1750.

    Article  PubMed  Google Scholar 

  • Christie JM, Jane DE, Monaghan DT. Native N-methyl-D-aspartate receptors containing NR2A and NR2B subunits have pharmacologically distinct competitive antagonist binding sites. J Pharmacol Exp ther 2000; 292: 1169–1174.

    PubMed  Google Scholar 

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed., Lawrence Erlbaum, Hillsdale, NJ, 1998; p 42.

    Google Scholar 

  • Coull MA, Lowther S, Katona CLE, Horton RW. Altered brain protein kinase C in depression: a postmortem study. Eur Neuropsychopharmacol 2000; 10: 283–288.

    Article  PubMed  Google Scholar 

  • Daviss SR, Lewis DA. Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 1995; 59: 81–96.

    Article  PubMed  Google Scholar 

  • Eastwood SL, Cairns NJ Harrison PJ. Synaptophysin gene expression in schizophrenia: investigation of synaptic pathology in the cerebral cortex. Br J Psychiatry 2000; 176: 236–242.

    Article  PubMed  Google Scholar 

  • Fatemi SH. Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry, in press.

    Google Scholar 

  • Frerking M, Nicoll RA. Synaptic kainate receptors. Curr Opin Neurobiol 2000; 10: 342–351.

    Article  PubMed  Google Scholar 

  • Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M, Davies P, Davis KL. Increased concentrations of presynaptic proteins in the cingulated cortex of subjects with schizophrenia. Arch Gen Psychiatry 1997; 54: 559–566.

    Article  PubMed  Google Scholar 

  • Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446–453.

    Article  PubMed  Google Scholar 

  • Glantz LA, Lewis DA. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specificity. Arch Gen Psychiatry 1997; 54: 943–952.

    Article  PubMed  Google Scholar 

  • Glantz LA, Austin MC, Lewis DA. Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 2000; 48: 389–397.

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23: 437–458.

    Article  PubMed  Google Scholar 

  • Guidotti A, Auta J, Davis JM, Gerevini VD, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Vzonov D, Costa E. Decrease in reelin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.

    Article  PubMed  Google Scholar 

  • Guidotti A, Pesold C, Costa E. New neurochemical markers for psychosis: a working hypothesis of their operation. Neurochem Res 2000a; 25: 1207–1218.

    Article  PubMed  Google Scholar 

  • Healy DJ, Haroutunian V, Powchik P, Davidson M, Davis KL, Watson SJ, Meador-Woodruff JH. AMPA receptor binding and subunit mRNA expression in prefrontal cortex and striatum of elderly schizophrenics. Neuropsychopharmacology 1998; 19: 278–286.

    PubMed  Google Scholar 

  • Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91: 1247–1255.

    Article  PubMed  Google Scholar 

  • Hrdina P, Faludi G, Li Q, Bendotti C, Tekes K, Sotonyi P, Palkovits M. Growth-associated protein (GAP-43), its mRNA, and protein kinase C (PKC) isoenzymes in brain regions of depressed suicides. Mol Psychiatry 1998; 3: 411–418.

    Article  PubMed  Google Scholar 

  • Impagnatiello F, Guidotti A, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 15718–15723.

    Article  PubMed  Google Scholar 

  • Ishimaru M, Kurumaji A, Toru M. Increases in strychnine-insensitive glycine binding sites in cerebral cortex of chronic schizophrenics: evidence for glutamate hypothesis. Biol Psychiatry 1994; 35: 84–95.

    Article  PubMed  Google Scholar 

  • Jorgensen OS, Riederer P. Increased synaptic markers in hippocampus of depressed patients. J Neural Transm 1985; 64: 55–66.

    Article  PubMed  Google Scholar 

  • Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffin WST. Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for `hypofrontality’. Mol Psychiatry 1999; 4: 39–45.

    Article  PubMed  Google Scholar 

  • Kimble MB, Hyde TM, Murray AM, Herman MM, Kleinman JE. A postmortem study of frontal cortical dopamine D1 receptors in schizophrenics, psychiatric controls and normal controls. Biol Psychiatry 1996; 40: 1191–1199.

    Article  Google Scholar 

  • Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H. [3I]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 1989; 77: 231–236.

    Article  PubMed  Google Scholar 

  • Kozlovsky N, Belmaker RH, Agam G. Low GSK-3 beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 2000; 157: 831–833.

    Article  PubMed  Google Scholar 

  • Lahti RA, Cochrane EV, Roberts RC, Conley RR, Tamminga CA. [311]Neurotensin receptor densities in human postmortem brain tissue obtained from normal and schizophrenic persons: an autoradiographic study. J Neural Transm 1998; 105: 507–516.

    Article  PubMed  Google Scholar 

  • Lewis DA, Gonzalez-Burgos G. Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Res Bull 2000; 52: 309–317.

    Article  PubMed  Google Scholar 

  • Mita T, Hanada S, Nishino N, Kuno T, Nakai H, Yamadori T, Mizoi Y, Tanaka C. Decreased serotonin S2 and increased dopamine D2 receptors in chronic schizophrenics. Biol Psychiatry 1986; 21: 1407–1414.

    Article  PubMed  Google Scholar 

  • Mulcrone J, Kerwin RW. No difference in the expression of the D4 gene in postmortem frontal cortex from controls and schizophrenics. Neurosci Lett 1996; 219: 163–166.

    Article  PubMed  Google Scholar 

  • Nowak G, Paul IA, Popik P, Young A, Skolnick P. Ca2+ antagonists effect an antidepressant-like adaptation of the NMDA receptor complex. Eur J Pharmacol 1993; 247: 101–102.

    Article  PubMed  Google Scholar 

  • Nowak G, Ordway GA, Paul IA. Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 1995; 675: 157–164.

    Article  PubMed  Google Scholar 

  • Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Mol Brain Res 1998; 56: 207–217.

    Article  PubMed  Google Scholar 

  • Ohnuma T, Augood SJ, Arai H, McKenna Pi, Emson PC. Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience 1999; 93: 441–448.

    Article  PubMed  Google Scholar 

  • Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  PubMed  Google Scholar 

  • Ongur D, Drevets WC, Price JL. Glia1 reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 1998; 95: 13290–13295.

    Article  PubMed  Google Scholar 

  • Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci USA 1996; 93: 14182–14187.

    Article  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA. Morphometric evidence for neuronal and glial prefrontal pathology in major depression. Biol Psychiatry 1999; 45: 1085–1098.

    Article  PubMed  Google Scholar 

  • Roberts DA, Balderson D, Pickering-Brown SM, Deakin JFW, Owen F. The relative abundance of dopamine D4 receptor mRNA in postmortem brains of schizophrenics and controls. Schizophr Res 1996; 20: 171–174.

    Article  PubMed  Google Scholar 

  • Schramm M, Falkai P, Feldmann N, Knable MB, Bayer TA. Reduced tyrosine kinase receptor C mRNA levels in the frontal cortex of patients with schizophrenia. Neurosci Lett 1998; 257: 65–68.

    Article  PubMed  Google Scholar 

  • Shapiro J, Belmaker RH, Bigeon A, Seher A, Agam A. Scyllo-inositol in postmortem brain of suicide victims, bipolar, unipolar and schizophrenic patients. J Neural Transm, in press.

    Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–818.

    Article  PubMed  Google Scholar 

  • Sokolov BP. Expression of NMDARI, GluR1, G1uR7, and KAI glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochem 1998; 71: 2454–2464.

    Article  PubMed  Google Scholar 

  • Song L, Greendorfer AJ, Bartolucci AA, Jope RS. Phosphoinositide signal transduction system and G-protein levels in postmortem brain from subjects with bipolar disorder, major depression, and schizophrenia. J Psychiatr Res, in press.

    Google Scholar 

  • Thompson PM, Sower AC, Perrone-Bizzozero NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 1998; 43: 239–243.

    Article  PubMed  Google Scholar 

  • Tom M, Watanabe S, Shibuya H, Nishikawa T, Noda K, Mitsushio H, Ichikawa H, Kurumaji A, Takashima M, Mataga N, Ogawa A. Neurotransmitters, receptors and neuropeptides in postmortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 1988; 78: 121–137.

    Google Scholar 

  • Torrey EF, Webster M, Knable M, Johnston N, Yolken RH. The Stanley Foundation Brain Collection and Neuropathology Consortium. Schizophr Res 2000; 44: 151–155.

    Article  PubMed  Google Scholar 

  • Uranova NA, Vostrikov VM, Olovskaya DD, Rachmanova VI. Oligodendroglial density in the prefrontal cortex area 9 in schizophrenia and mood disorders: A study of the Stanley Foundation Neuropathology Consortium. Submitted manuscript.

    Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylaseó7 messenger RNA expression in a subset of prefrontal cortical gammaaminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 2000; 57: 237–245.

    Article  PubMed  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry 2001; 158: 256–265.

    Article  PubMed  Google Scholar 

  • Woo T, Miller JL, Lewis DA. Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 1997; 154: 1013–1015.

    PubMed  Google Scholar 

  • Woo T-U, Whitehead RE, Melchitzky DS, Lewis DA. A subclass of prefrontal gammaaminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 5341–5346.

    Article  PubMed  Google Scholar 

  • Xing G, Post R. Reduced Nurrl (NOTI) and NGFI-B (TR3) expression in the prefrontal cortex of schizophrenic and unipolar patients. Submitted manuscript.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knable, M.B., Barci, B.M., Webster, M.J., Torrey, E.F. (2002). Summary of Prefrontal Molecular Abnormalities in the Stanley Foundation Neuropathology Consortium. In: Agam, G., Everall, I.P., Belmaker, R.H. (eds) The Postmortem Brain in Psychiatric Research. Neurobiological Foundation of Aberrant Behaviors, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3631-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3631-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4921-9

  • Online ISBN: 978-1-4757-3631-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics