Skip to main content

Indications of Abnormal Connectivity in Neuropsychiatric Disorders in Postmortem Studies

  • Chapter
The Postmortem Brain in Psychiatric Research

Part of the book series: Neurobiological Foundation of Aberrant Behaviors ((NFAB,volume 4))

  • 409 Accesses

Abstract

Proteins enriched in presynaptic terminals are frequently used as postmortem markers for neural connectivity in neuropsychiatric disorders. This chapter describes the animal studies which form the foundation for interpreting results in humans, followed by comments on studies in dementia and other disorders. Studies of presynaptic proteins and their mRNAs in schizophrenia and affective disorders indicate that multiple proteins are abnormally expressed or regulated. In the future, an approach which considers interactions between presynaptic proteins involved in neurotransmission may be fruitful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbeau D, Liang JJ, Robitaille Y, Quirion R, Srivastava LK. Decreased expression of the embyronic form of the nerve cell adhesion molecule in schizophrenic brains. Proc Nat Acad Sciences USA 1995; 92: 2785–2789.

    Article  Google Scholar 

  • Blennow K, Bogdanovic N, Gottfries CG, Davidsson P. The growth-associated protein GAP-43 is increased in the hippocampus and in the gyrus cinguli in schizophrenia. Journal of Molec Neurosci 1999; 13: 101–109.

    Article  Google Scholar 

  • Breese CR, Freedman R, Leonard SS. Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res 1995; 674: 82–90.

    Article  PubMed  Google Scholar 

  • Brock T, O’Callaghan J. Quantitative changes in the synaptic vesicle proteins synapsin I and p38 and the astrocyte-specific protein glial fibrillary acidic protein are associated with chemical-induced injury to the rat central nervous system. J Neurosci 1987; 7: 931–942.

    PubMed  Google Scholar 

  • Browning MD, Dudek EM, Rapier JL, Leonard S, Freedman R. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry 1993; 34: 529–535.

    Article  PubMed  Google Scholar 

  • Cabalka L, Hyman B, Goodlett C, Ritchie T, Van Hoesen G. Alteration in the pattern of nerve terminal protein immunoreactivity in the perforant pathway in Alzheimer’s disease and in rats after entorhinal lesions. Neurobiol Aging 1992; 13: 283–291.

    Article  PubMed  Google Scholar 

  • Daly C, Ziff EB. Post-transcriptional regulation of synaptic vesicle protein expression and the developmental control of synaptic vesicle formation. J Neurosci 1997; 17: 2365–2375.

    PubMed  Google Scholar 

  • Davidsson P, Gottfries J, Bogdanovic N, et al. The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophr Res 1999; 40: 23–29.

    Article  PubMed  Google Scholar 

  • Davis S, Rodger J, Hicks A, Mallet J, Laroche S. Brain structure and task-specific increase in expression of the gene encoding syntaxin 1B during learning in the rat: a potential molecular marker for learning-induced synaptic plasticity in neural networks. Eur J Neurosci 1996; 8: 2068–2074.

    Article  PubMed  Google Scholar 

  • Eastwood SL, Burnet PWJ, Harrison PJ. Striatal synaptophysin and haloperidol-induced synaptic plasticity. NeuroReport 1994; 5: 677–680.

    Google Scholar 

  • Eastwood SL, Burnet PWJ, Harrison PJ. Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 1995; 66: 309–319.

    Article  PubMed  Google Scholar 

  • Eastwood SL, Burnet PWJ, Harrison PJ. Expression of complexin I and II mRNAs and their regulation by antipsychotic drugs in the rat forebrain. Synapse 2000a; 36: 167–177.

    Article  PubMed  Google Scholar 

  • Eastwood SL, Cairns NJ, Harrison Pi. Synaptophysin gene expression in schizophrenia. Brit J Psychiatry 2000b; 176: 236–242.

    Article  Google Scholar 

  • Eastwood SL, Cotter D, Harrison PJ. Cerebellar synaptic protein expression in schizophrenia. Neuroscience 2001; (in press).

    Google Scholar 

  • Eastwood SL, Harrison PJ. Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 1995; 69: 339343.

    Google Scholar 

  • Eastwood SL, Harrison PJ. Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience 1998; 86: 437–448.

    Article  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ. Detection and quantification of hippocampal synaptophysin messenger RNA in schizophrenia using autoclaved, fonnalin-fixed, paraffin wax-embedded sections. Neuroscience 1999; 93: 99–106.

    Article  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ. Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res Bull 2001; (ín press).

    Google Scholar 

  • Eastwood SL, Heffernan J, Harrison PJ. Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes. Molec Psychiatry 1997; 2: 322–329.

    Article  Google Scholar 

  • Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatric Res 1982–83; 17: 319–334.

    Google Scholar 

  • Fog R, Pakkenberg H, Juul P, Bock E, Jorgensen OS, Andersen J. High-dose treatment of rats with perphenazine. Psychopharmacol 1976; 50: 305–307.

    Article  Google Scholar 

  • Gabriel SM, Haroutunian V, Powchik P, et al. Increased concentrations of presynaptic proteins in the cingulate cortex of schizophrenics. Arch Gen Psychiatry 1997; 54: 559–566.

    Article  PubMed  Google Scholar 

  • Geddes JW, Hess EJ, Hart RA, Kesslak JP, Cotman CW, Wilson MC. Lesions of hippocampal circuitry define synaptosomal-associated protein-25 (SNAP-25) as a novel presynaptic marker. Neuroscience 1990; 38: 515–525.

    Article  PubMed  Google Scholar 

  • Glantz LA, Austin MC, Lewis DA. Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia Biol Psychiatry 2000; 48: 389–397.

    Google Scholar 

  • Glantz LA, Lewis DA. Synaptophysin and not rab3A is specifically reduced in the prefrontal cortex of schizophrenic subjects. Soc Neurosci Abstr 1993; 20: 622.

    Google Scholar 

  • Glantz LA, Lewis DA. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnstic specificity. Arch Gen Psychiatry 1997; 54: 943–952.

    Article  PubMed  Google Scholar 

  • Hamos JE, DeGennaro LJ, Drachman DA. Synaptic loss in Alzheimer’s disease and other dementias. Neurology 1989; 39: 355–361.

    Article  PubMed  Google Scholar 

  • Harrison PJ. The neuropathological effects of antipsychotic drugs. Schizophr Res 1999; 40: 8799.

    Article  Google Scholar 

  • Harrison PJ, Eastwood SL. Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 1998; 352: 1669–1673.

    Article  PubMed  Google Scholar 

  • Heindel WC, Jernigan TL, Archibald SL, Achim CL, Masliah E, Wiley CA. The relationship of quantitative brain magnetic resonance imaging measures to neuropathologie indices of human immunodeficiency virus infection. Arch Neurology 1994; 51: 1129–1135.

    Article  Google Scholar 

  • Helme-Guizon A, Davis S, Israel M, et al. Increase in syntaxin IB and glutamate release in mossy fibre terminals following induction of LTP in the dentate gyrus: a candidate molecular mechanism underlying transsynaptic plasticity. Eur J Neurosci 1998; 10: 2231 2237.

    Google Scholar 

  • Hicks A, Davis S, Rodger J, Helme-Guizon A, Laroche S, Mallet J. Synapsin I and syntaxin 1B: key elements in the control of neurotransmitter release are regulated by neuronal activation and long-term potentiation in vivo. Neuroscience 1997; 79: 329–340.

    Article  PubMed  Google Scholar 

  • Honer WG, Falkai P, Bayer TA, et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cerebral Cortex 2001; (submitted).

    Google Scholar 

  • Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork M. Synaptic and plasticity associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91: 1247–1255.

    Article  PubMed  Google Scholar 

  • Honer WG, Falkai P, Young C, et al. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia Neuroscience 1997; 78: 99–110.

    Google Scholar 

  • Honer WG, Young C, Falkai P. Synaptic pathology. In: Harrison PJ, Roberts GW (eds). The Neuropathology of Schizophrenia Oxford University Press, Oxford, 2000; pp 105–136.

    Google Scholar 

  • Jorgensen OS, Riederer P. Increased synaptic markers in hippocampus of depressed patients. J Neural Transmission 1985; 64: 55–66.

    Article  Google Scholar 

  • Kamphuis W, Smirnova T, Hicks A, Hendriksen H, Mallet J, Lopes da Silva FH. The expression of syntaxin 1B/GR33 mRNA is enhanced in the hippocampal kindling model of epileptogenesis. J Neurochem 1995; 65: 1974–1980.

    Article  PubMed  Google Scholar 

  • Karson CN, Mrak RE, Schluterman KO, Stumer WQ, Sheng JG, Griffin WST. Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’. Molec Psychiatry 1999; 4: 39–45.

    Article  Google Scholar 

  • Kroesen S, Marksteiner J, Mahata SK, et al. Effects of haloperidol, clozapine and citalopram on messenger RNA levels of chromogranins A and B and secretogranin II in various regions of rat brain. Neuroscience 1995; 69: 881–891.

    Article  PubMed  Google Scholar 

  • Lidow MS, Song Z-M, Castner SA, Allen PB, Greengard P, Goldman-Rakic PS. Antipsychotic treatment induces alterations in dendrite-and spine-associated proteins in dopamine-rich areas of the primate cerebral cortex. Biol Psychiatry 2001; 49: 1–12.

    Article  PubMed  Google Scholar 

  • Liu D, Diorio J, Day JC, Francis DD, Meaney MJ. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neurosci 2000; 3: 799–806.

    Article  PubMed  Google Scholar 

  • Loessner B, Bullock S, Rose SPR. 411B: a monoclonal postsynaptic marker for modulations of synaptic connectivity in the rat brain. J Neurochem 1988; 51: 385–390.

    Article  PubMed  Google Scholar 

  • Lue L-F, Brachova L, Civin WH, Rogers J. Inflammation, Ab deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. Journal of Neuropathology and Experimental Neurology 1996; 55: 1083–1088.

    PubMed  Google Scholar 

  • Lynch MA, Voss KL, Rodriguez J, Bliss TVP. Increase in synaptic vesicle proteins accompanies long-term potentiation in the dentate gyms. Neuroscience 1994; 60: 1–5.

    Article  PubMed  Google Scholar 

  • Marin C, Tolosa E. Striatal synaptophysin levels are not indicative of dopaminergic supersensitivity. Neuropharmacol 1997; 36: 1115–1117.

    Article  Google Scholar 

  • Masliah E, Ellisman M, Carragher B, et al. Three-dimensional analysis of the relationship between synaptic pathology and neuropil threads in Alzheimer disease. J Neuropathol Exp Neurol 1992; 51: 404–414.

    Article  PubMed  Google Scholar 

  • Masliah E, Fagan AM, Terry RD, DeTeresa R, Mallory M, Gage FH. Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP-43 in the dentate gyrus of the adult rat. Exp Neurol 1991; 113: 131–142.

    Article  PubMed  Google Scholar 

  • Masliah E, Terry RD, DeTeresa RM, Hansen LA. Inununohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci Lett 1989; 103: 234–239.

    Article  PubMed  Google Scholar 

  • McGlashan TH, Hoffman RE. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.

    Article  PubMed  Google Scholar 

  • Melloni RH, Hemmendinger LM, Hamos JE, DeGennnaro LJ. Synapsin I gene expression in the adult rat brain with comparative analysis of mRNA and protein in the hippocampus. J Comp Neurol 1993; 327: 507–520.

    Article  PubMed  Google Scholar 

  • Minger SL, Honer WG, Esiri MM, et al. Synaptic pathology in prefrontal cortex is present only with severe dementia in Alzheimer’s disease. J Neuropath Exp Neurol 2001 (in press).

    Google Scholar 

  • Mimics K, Middleton FA, Marquez A, Lewis DA, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  Google Scholar 

  • Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, et al. Staging of cytoskeletal and b-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol 2000; 157: 623–636.

    Article  PubMed  Google Scholar 

  • Mullany PM, Lynch MA. Evidence for a role for synaptophysin in expression of long-term potentiation in rat dentate gyrus. NeuroReport 1998; 9: 2489–2494.

    Google Scholar 

  • Nakahara T, Motomura K, Hashimoto K, et al. Long-term treatment with haloperidol decreases the mRNA levels of complexin I, but not complexin II, in rat prefrontal cortex, nucleus acumbens and ventral tegmental area. Neurosci Lett 2000; 290: 29–32.

    Article  PubMed  Google Scholar 

  • Nakahara T, Nakamura K, Tsutsumi T, et al. Effect of chronic haloperidol treatment on synaptic protein mRNAs in the rat brain. Molec Brain Res 1998; 61: 238–242.

    Article  PubMed  Google Scholar 

  • Patanow CM, Day JR, Billingsley ML. Alterations in hippocampal expression of SNAP-25, GAP-43, stannin and glial fibrillary acidic protein following mechanical and trimethyltininduced injury in the rat. Neuroscience 1997; 76: 187–202.

    Article  PubMed  Google Scholar 

  • Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Nat Acad Sci U.S.A. 1996; 93: 14182–14187.

    Article  Google Scholar 

  • Poltorak M, Herranz AS, Williams J, Lauretti L, Freed WJ. Effects of frontal cortical lesions on mouse striatum: reorganizationof cell recognition molecule, glial fiber, and synaptic protein expression in the dorsomedial striatum. J Neurosci 1993; 13: 2217–2223.

    PubMed  Google Scholar 

  • Richter-Levin G, Thomas KL, Hunt SP, Bliss TVP. Dissociation between genes activated in long-term potentiation and in spatial learning in the rat. Neurosci Lett 1998; 251: 41–44.

    Article  PubMed  Google Scholar 

  • Roberts LA, Morris BJ, O’Shaughnessey CT. Involvement of two isoforms of SNAP-25 in the expression of long-term potentiation in the rat hippocampus. NeuroReport 1998; 9: 33–36.

    Google Scholar 

  • Rodger J, Davis S, Laroche S, Mallet J, Hicks A. Induction of long-term potentiation in vivo regulates alternate splicing to alter syntaxin 3 isoform expression in rat dentate gyros. J Neurochem 1998; 71: 666–675.

    Article  PubMed  Google Scholar 

  • Sawada K, Takahashi S, Dwork AJ, Li H-Y, Hu L, Falkai P. Complexins I and II in anterior frontal cortex in schizophrenia. Schizophr Res 2001; (in press).

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.

    Article  PubMed  Google Scholar 

  • Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL. Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 2000; 48: 184–196.

    Article  PubMed  Google Scholar 

  • Stefan MD, Horton K, Johnston P, Bruton CJ, Roberts GW, Royston MC. Synaptic pathology in schizophrenia: abnormalities of the prefrontal cortex. Schizophr Res 1995; 15: 32.

    Article  Google Scholar 

  • Tcherepanov AA, Sokolov BP. Age-related abnormalities in expression of mRNAs encoding synapsin IA, synapsin I B, and synaptophysin in temporal cortex of schizophrenics. J Neurosci Res 1997; 49: 639–644.

    Article  PubMed  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–580.

    Article  PubMed  Google Scholar 

  • Thompson PM, Sower AC, Perrone-Bizzozero NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 1998; 43: 239–243.

    Article  PubMed  Google Scholar 

  • Vawter MP, Cannon-Spoor HE, Hemperly JJ, et al. Abnormal expression of cell recognition molecules in schizophrenia. Exp Neurol 1998; 149: 424–432.

    Article  PubMed  Google Scholar 

  • Vawter MP, Howard AL, Hyde TM, Kleinman JE, Freed WJ. Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia. Molec Psychiatry 1999; 4: 467–475.

    Article  Google Scholar 

  • Walaas SI, Jahn R, Greengard P. Quantitation of nerve terminal populations: synaptic vesicleasociated proteins as markers for synaptic density in the rat neostriatum. Synapse 1988; 2: 516–520.

    Article  PubMed  Google Scholar 

  • Webster MJ, Weickert CS, Herman MM, Hyde TM, Kleinman JE. Synaptophysin and GAP-43 mRNA levels in the hippocampus of subjects with schizophrenia. Schizophr Res 2001; 49: 61–70.

    Article  Google Scholar 

  • Weickert CS, Webster MJ, Hyde TM, et al. Reduced GAP-43 mRNA in dorsolateral prefrontal cortex of patients with schizophrenia. Cereb Cortex 2001; 11: 136–147.

    Article  PubMed  Google Scholar 

  • Young CE, Arima K, Xie J, et al. SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 1998; 8: 261–268.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Honer, W.G. (2002). Indications of Abnormal Connectivity in Neuropsychiatric Disorders in Postmortem Studies. In: Agam, G., Everall, I.P., Belmaker, R.H. (eds) The Postmortem Brain in Psychiatric Research. Neurobiological Foundation of Aberrant Behaviors, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3631-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3631-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4921-9

  • Online ISBN: 978-1-4757-3631-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics