Skip to main content

Defining the Role of Specific Limbic Circuitry in the Pathophysiology of Schizophrenia and Bipolar Disorder

  • Chapter
  • 409 Accesses

Part of the book series: Neurobiological Foundation of Aberrant Behaviors ((NFAB,volume 4))

Abstract

A core component of all corticolimbic circuitry is the GABAergic interneuron. Recent postmortem studies have provided consistent evidence that a defect of GABAergic neurotransmission probably plays a role in both schizophrenia and bipolar disorder. Based on the regional and subregional distribution of changes in GABA cells in layer II of the anterior cingulate regions and sectors CA3 and CA2 of the hippocampal formation, it has been postulated that the basolateral nucleus of the amygdala (BLa), a region that projects preferentially to both of these latter sites, may contribute to these abnormalities by sending an increased flow of excitatory activity. In support of this hypothesis, a “partial” rodent model in which the GABAA antagonist picrotoxin is injected into the BLa has demonstrated changes in the GABA system that are remarkably similar to those seen in schizophrenia and bipolar disorder. In the years to come, the combined use of studies in rodent, primate and human brain will be useful in identifying how specific phenotypic changes in subclasses of interneurons may have been induced in schizophrenia and bipolar disorder. Such information will undoubtedly provide important new insights into how the integration of GABAergic interneurons with other intrinsic and extrinsic transmitter systems may be altered in neuropsychiatric disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggleton JP.: A description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp Brain Res 1986; 64: 515–526.

    Article  PubMed  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jr., Jones EG.: Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.

    Article  PubMed  Google Scholar 

  • Amaral DG, Price JL, Pitkänen A, Carmichael ST.: Anatomical organization of the primate amygdaloid complex. In: Amygdala (Aggleton JP, ed), 1992, pp 1–66. New York: Wiley-Liss.

    Google Scholar 

  • Arnold SE.: Hippocampal pathology In: The Neuropathology of Schizophrenia. Harrison PJ, Roberts GW (eds), Oxford Press, Oxford 2000;pp 57–80.

    Google Scholar 

  • Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ.: Smaller neuron size in schizophrenia in hippocampal subfields that mediate corticalhippocampal interactions. Am J Psychiatry 1995; 152: 738–748.

    PubMed  Google Scholar 

  • Beasley CL, Reynolds GP.: Parvalbunvin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 1997; 24: 349–355.

    Article  PubMed  Google Scholar 

  • Benes FM.: Post-mortem structural analyses of schizophrenic brain: study designs and the interpretation of data. Psychiatr Dev 1988; 6: 213–226.

    PubMed  Google Scholar 

  • Benes FM.: Evidence for neurodevelopment disturbances in anterior cingulate cortex of post-mortem schizophrenic brain. Schizophr Res 1991; 5: 187–188.

    Article  PubMed  Google Scholar 

  • Benes FM.: The relationship of cingulate cortex to schizophrenia. In: Neurobiology of Cingulate Cortex and Limbic Thalamus (Vogt BA, Gabriel M, eds), 1993; pp 581605. Boston: Birkhäuser, Inc.

    Google Scholar 

  • Benes FM.: A neurodevelopmental approach to the understanding of schizophrenia and other mental disorders. In: Developmental pschychopathology (Cicchetti D, Cohen DJ, eds), 1995; pp 227–253. New York: J. Wiley and Sons.

    Google Scholar 

  • Benes FM.: Is there evidence for neuronal loss in schizophrenia? Int Rev Psychiatry 1997a9:429–436.

    Google Scholar 

  • Benes FM.: What an archaeological dig can tell us about macro-and microcircuitry in brains of schizophrenia subjects. Schizophr Bull 1997a; 23: 503–507.

    Article  PubMed  Google Scholar 

  • Benes FM.: Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry 1999; 46: 589–599.

    Article  PubMed  Google Scholar 

  • Benes FM, Bird ED.: An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiatry 1987; 44: 608–616.

    Article  PubMed  Google Scholar 

  • Benes FM, Todtenkopf MS.: Effect of age and neuroleptics on tyrosine hydroxylase-IR in sector CA2 of schizophrenic brain. Neuroreport 1999; 10: 3527–3530.

    Article  PubMed  Google Scholar 

  • Benes FM, Berretta S.: Amygdalo-Entorhinal Inputs to the Hippocampal Formation in Relation to Schizophrenia. Ann New York Acad Sci 2000; 911: 293–304.

    Article  Google Scholar 

  • Benes FM, Berretta, S.: GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharm 2001; In press.

    Google Scholar 

  • Benes FM, Todtenkopf MS.: Meta-Analysis of nonpyramidal neuron (NP) loss in layer II in anterior cingulate cortex (ACCx-II) from three studies of postortem schizophrenic brain. Soc for Neurosci Abstracts 1998; 24: 1275.

    Google Scholar 

  • Benes FM, Davidson B, Bird ED.: Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry 1986; 43: 31–35.

    Article  PubMed  Google Scholar 

  • Benes FM, Vincent SL, San Giovanni JP.: High resolution imaging of receptor binding in analyzing neuropsychiatric diseases. Biotechniques 1989;7:970–972, 974–976, 978.

    Google Scholar 

  • Benes FM, Sorensen I, Bird ED.: Morphometric analyses of the hippocampal formation in schizophrenic brain. Schiz Bull 1991a; 17: 597–608.

    Article  Google Scholar 

  • Benes FM, Todtenkopf MS, Taylor JB.: Differential distribution of tyrosine hydroxylase fibers on small and large neurons in layer II of anterior cingulate cortex of schizophrenic brain. Synapse 1997a; 25: 80–92.

    Article  PubMed  Google Scholar 

  • Benes FM, Majocha R, Bird ED, Marotta CA.: Increased vertical axon numbers in cingulate cortex of schizophrenics. Arch Gen Psychiatry 1987; 44: 1017–1021.

    Article  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Marie A, Khan Y.: Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 1996a; 75: 1021–1031.

    Article  PubMed  Google Scholar 

  • Benes FM, Khan Y, Vincent SL, Wickramasinghe R.: Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 1996c; 22: 338–349.

    Article  PubMed  Google Scholar 

  • Benes FM, Kwok EW, Vincent SL, Todtenkopf MS.: A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 1998a; 44: 88–97.

    Article  PubMed  Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL.: Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991b; 48: 996–1001.

    Article  PubMed  Google Scholar 

  • Benes FM, Sorensen I, Vincent SL, Bird ED, Sathi M.: Increased density of glutamateimmunoreactive vertical processes in superficial laminae in cingulate cortex of schizophrenic brain. Cereb Cortex 1992a; 2: 503–512.

    Article  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP.: Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 1992b; 12: 924–929.

    PubMed  Google Scholar 

  • Benes FM, Wickramasinghe R, Vincent SL, Khan Y, Todtenkopf M.: Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 1997a755:121–129.

    Google Scholar 

  • Benes FM, Todtenkopf MS, Kostoulakos P.: GIuR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 2001b;In press.

    Google Scholar 

  • Berger B, Tassin JP, Blanc G, Moyne MA, Thierry AM.: Histochemical confirmation for dopaminergic innervation of rat cerebral cortex after the destruction of noradrenergic ascending pathways. Brain Res 1974; 81: 332–337.

    Article  PubMed  Google Scholar 

  • Berretta S, Munno DW, Benes FM.: Amygdalar activation alters the hippocampal GABA system. ‘partial’ modelling for postmortem changes in schizophrenia J Comp Neurol 2001; 431: 129–138.

    Google Scholar 

  • Binder C AHW.: Programmed cell death–many questions still to be answered. Ann Hematol 1994; 69: 45–55.

    Article  PubMed  Google Scholar 

  • Bird ED, Spokes EG, Iversen LL.: Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia Brain 1979; 102: 347–360.

    Google Scholar 

  • Bogerts B. The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull 1997; 23: 423–435.

    Article  PubMed  Google Scholar 

  • Bursch W, Oberhammer F, Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol Sci 1992; 13: 245–251.

    Article  PubMed  Google Scholar 

  • Colino A, Fernandez de Molina A.: Electrical activity generated in subicular and entorhinal cortices after electrical stimulation of the lateral and basolateral amygdala of the rat. Neuroscience 1986; 19: 573–580.

    Article  PubMed  Google Scholar 

  • Conde F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA.: Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 1994; 341: 95–116.

    Article  PubMed  Google Scholar 

  • Coyle JT.: The glutamatergic dysfunction hypothesis for schizophrenia Harvard Rev Psychiatry 1996; 3: 241–253.

    Google Scholar 

  • Coyle JT, Puttfarcken P.: Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262: 689–695.

    Article  PubMed  Google Scholar 

  • Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G.: Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 1999; 19: 274–287.

    PubMed  Google Scholar 

  • Cunningham MG, Bhattacharya S, Benes FM.: Post-natal ingrowth of amygdalo-cortical afferents in rat brain continues into adulthood. Soc for Neurosci Abstracts 2000; 26.

    Google Scholar 

  • Davis SR, Lewis DA.: Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 1995; 59: 81–96.

    Article  Google Scholar 

  • Descarries L, Beaudet A, Watkins KC.: Serotonin nerve terminals in adult rat neocortex. Brain Res 1975; 100: 563–588.

    Article  PubMed  Google Scholar 

  • Ding R, Asada H, Obata K.: Changes in extracellular glutamate and GABA levels in the hippocampal CA3 and CA1 areas and the induction of glutamic acid decarboxylase67 in dentate granule cells of rats treated with kainic acid. Brain Res 1998; 800: 105–113.

    Article  PubMed  Google Scholar 

  • Eccles JC.: The cerebral neocortex. A theory of its operation. In: Cerbral Cortex. Functional Properties of Cortical Cells (Jones EG, Peter A, eds), 1984;pp 1–48. New York: Plenum Press.

    Google Scholar 

  • Fairen A, DeFelipe J, Regidor J.: Nonpyramidal neurons. In: Cerebral Cortex (A. P, Jones EG, eds), 1982;pp 201–253. New York: Plenum Press.

    Google Scholar 

  • Falkai P, Bogerts B, Rozumek M.: Limbic pathology in schizophrenia: The entorhinal region–a morphometric study. Biol Psychiat 1988; 24: 515–521.

    Article  PubMed  Google Scholar 

  • Farber E.: Ideas in pathology: Programmed cell death: Necrosis versus apoptosis. Mod Pathology 1994;7:605–609.

    Google Scholar 

  • Feldman W, Robinson, S.: Electrical activity of the brain in adrenalectomized rats with implanted electrodes. J Neurol Sci 1968; 6: 1–8.

    Article  PubMed  Google Scholar 

  • Good PF, Huntley GW, Rogers SW, Heinemann SF, Morrison H.: Organization and quantitative analysis of kainate receptor subunit GluR5–7 immunoreactivity in monkey hippocampus. Brain Res 1993; 624: 347–353.

    Article  PubMed  Google Scholar 

  • Hanada S, Mita T, Nishinok N, Tankaka C.: H-Muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sci 1987; 40: 259–266.

    Article  PubMed  Google Scholar 

  • Harrison PH.: Schizophrenia: a disorder of neurodevelopment? Current Opinion Neurobiol 1997;7:285–289.

    Google Scholar 

  • Harrison PJ.: The neuropathological effects of antipsychotic drugs. Schizophr Res 1999;40:87–99.

    Google Scholar 

  • Harrison PJ, McLaughlin D, Kerwin RW.: Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 1991; 337: 450–452.

    Article  PubMed  Google Scholar 

  • Heckers S, Heinsen H, Heinsen YC, Beckmann H.: Limbic structures and lateral ventricle in schizophrenia. A quantitative postmortem study. Arch Gen Psychiatry 1990; 47: 1016–1022.

    Article  PubMed  Google Scholar 

  • Heckers S, Heinsen H, Heinsen Y, Beckmann H.: Cortex, white matter, and basal ganglia in schizophrenia: a volumetric postmortem study. Biol Psychiatry 1991a; 29: 556–566.

    Article  PubMed  Google Scholar 

  • Heckers S, Heinsen H, Geiger B, Beckmann H.: Hippocampal neuron number in schizophrenia. Arch Gen Psychiatry 1991b; 48: 1002–1008.

    Article  PubMed  Google Scholar 

  • Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman, A.J., Alpert NM.: Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature 1998a; 1: 318–323.

    Google Scholar 

  • Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, Alpert NM.: Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neurosci 1998b; 1: 318–323.

    Article  PubMed  Google Scholar 

  • Henn FA, McKinney WT.: Animals models in psychiatry. In: Psychopharmacology: the third generation in progress (Meltzer HY, ed), 1987;pp 687–695. New York: Raven Press.

    Google Scholar 

  • Hsu CC, Thomas C, Chen W, Davis KM, Foos T, Chen JL, Wu E, Floor E, Schloss JV, Wu JY.: Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J Biol Chem 1999; 274: 24366–24371.

    Article  PubMed  Google Scholar 

  • Ichiki M, Kunugi H, Takei N, Murray RM, Baba H, Arai H, Oshima I, Okagami K, Sato T, Hirose T, Nanko S.: Intra-uterine physical growth in schizophrenia: evidence confirming excess of premature birth. Psychol Med 2000; 30: 597–604.

    Article  PubMed  Google Scholar 

  • Jones EG.: Cortical development and thalamic pathology in schizophrenia. Schizophr Bull 1997; 23: 483–501.

    Article  PubMed  Google Scholar 

  • Kaufman DL, Houser CR, Tobin AJ.: Two forms of the y-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 1991; 56: 720–723.

    Article  PubMed  Google Scholar 

  • Kerwin R, Patel S, Medrum B.: Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 1990; 39: 25–32.

    Article  PubMed  Google Scholar 

  • Kerwin RW, Patel S, Meldrum B, Czudek C, Reynolds GP.: Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia. Lancet 1988; 1: 583–584.

    Article  PubMed  Google Scholar 

  • Lambert JJ, Peters JA, Cottrell GA.: Actions of synthetic and endogenous steroids on the GABAA receptor. Trends Pharmacol Sci 1987; 8: 224–227.

    Article  Google Scholar 

  • Lawrie SM, Abukmeil SS.: Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998; 172: 110–120.

    Article  PubMed  Google Scholar 

  • LeDoux JE.: Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155–184.

    Article  PubMed  Google Scholar 

  • Lindvall O, Bjorklund A.: General organization of cortical monoamine systems. In: Monoamine Innervation of Cerebral Cortex (L. D, Reader TR, Jasper HH, eds), 1984;pp 9–40. New York: Alan R. Liss.

    Google Scholar 

  • Longson D, Deakin JF, Benes FM.: Increased density of entorhinal glutamateimmunoreactive vertical fibers in schizophrenia. J Neural Transm 1996; 103: 503–507.

    Article  PubMed  Google Scholar 

  • Majewska MD, Bisserbe JC, Eskay LR.: Glucocorticoids are modulators of GABAA receptors in brain. Brain Res 1985; 339: 178–182.

    Article  PubMed  Google Scholar 

  • Martin DL, Rimvall K.: Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 1993; 60: 395–407.

    Article  PubMed  Google Scholar 

  • McDonald AJ, Beitz AJ, Larson AA, Kuriyama R, Sellitto C, Madi JE.: Co-localization of glutamate and tubulin in putative excitatory neurons of the hippocampus and amygdala: an immunohistochemical study using monoclonal antibodies. Neuroscience 1989; 30: 405–421.

    Article  PubMed  Google Scholar 

  • McEwen B.: Glucocorticoids and hippocampus: Receptors in search of a function. In Adrenal Actions on Brain Ganten D and Pfaff E (eds) Springer-Verlag, Berlin, 1982; pp 1–22.

    Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH.: Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basais (Substantia innominata) and hypothalamus in the rhesus monkey. J Comp Neural 1883; 214: 140–191.

    Google Scholar 

  • Miller AL, Chaptal, C, McEwen, BS Beck IRE.: Modulation of high affinity GABA uptake into hippocampal synaptosomes by glucocorticoids. Psychoneuroendocrinol 1978; 3: 155–164.

    Article  Google Scholar 

  • Monaghan DT, Cotman CW.: Distribution of N-methyl-D-aspartate-sensitive L[3H]glutamate-binding sites in rat brain. Journal of Neuroscience 1985; 5: 2909–2919.

    PubMed  Google Scholar 

  • Mott DD, Turner DA, Okazaki MM, Lewis DV.: Interneurons of the dentate-hilus border of the rat dentate gyrus: morphological and electrophysiological heterogeneity. J Neurosci 1997; 17: 3990–4005.

    PubMed  Google Scholar 

  • Namchuk M, Lindsay L, Turck CW, Kanaani J, Baekkeskov S.: Phosphorylation of serine residues 3, 6, 10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65alpha. J Biol Chem 1997; 272: 1548–1557.

    Article  PubMed  Google Scholar 

  • Nathan B, Floor E, Kuo CY, Wu JY.: Synaptic vesicle-associated glutamate decarboxylase: identification and relationship to insulin-dependent diabetes mellitus. J Neurosci Res 1995; 40: 134–137.

    Article  PubMed  Google Scholar 

  • Olney JW, Farber NB.: Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  PubMed  Google Scholar 

  • Pakkenberg B.: Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry 1993; 34: 768–772.

    Article  PubMed  Google Scholar 

  • Pfaff DW, Silva MTA, Weiss JM.: Telemeterred recording of hormone effects on hippocampal neurons. Science 1971; 172: 394–395.

    Article  PubMed  Google Scholar 

  • Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A.: Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 1999; 403: 229–260.

    Article  PubMed  Google Scholar 

  • Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A.: Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 2000; 911: 369–391.

    Article  PubMed  Google Scholar 

  • Pollard H, Chariaut-Marlangue C, Cantagrel S, Represa A, Robain O, Moreau J, Ben-Ari Y.: Kainate-induced apoptotic cell death in hippocampal neurons. Neuroscience 1994; 63: 7–18.

    Article  PubMed  Google Scholar 

  • Rabow R, SJ, Farb DH.: From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse 1995; 21: 189–274.

    Article  PubMed  Google Scholar 

  • Reynolds GP, Czudek C, Andrews H.: Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 1990a; 27: 1038–1044.

    Article  PubMed  Google Scholar 

  • Reynolds GP, Czudek C, Andrews FIB.: Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 190b; 27: 1038–1044.

    Google Scholar 

  • Roberts GW, Colter N, Loflhouse R, Bogerts B, Zec M, Crow Ti.: Gliosis in schizophrenia. A survey. Biol Psychiat 1986; 39: 1043–1050.

    Article  Google Scholar 

  • Rosene DL, Van Hoesen GW.: The hippocompal formation of the primate brain. In: Cerebral Cortex (Peters A, Jones EG, eds), 1987;pp 345–456. New York: Plenum Press.

    Google Scholar 

  • Ross CA, Pearlson GD.: Schizophrenia, the heteromodal association neocortex and development. potential for a neurogenetic approach. Trends Neurosci 1996; 19: 17 1176.

    Google Scholar 

  • Sanders SK, Shekhar A.: Blockade of GABAA receptors in the region of the anterior basolateral amygdala of rats elicits increases in heart rate and blood pressure. Brain Res 1991; 567: 101–110.

    Article  PubMed  Google Scholar 

  • Sanders SK, Shekhar A.: Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacol Biochem Behav 1995; 52: 701–706.

    Article  PubMed  Google Scholar 

  • Sapolsky RM.: Stress, the aging brain, and the mechanisms of neuron death. Cambridge, Mass: MIT Press 1992.

    Google Scholar 

  • Saunders RC, Rosene DL.: A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices. J Comp Neurol 1988; 271: 153–184.

    Article  PubMed  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS.: Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–820.

    Article  PubMed  Google Scholar 

  • Shekhar A, Sajdyk TS, Keim SR, Yoder KK, Sanders SK.: Role of the basolateral amygdala in panic disorder. Ann N Y Acad Sci 1999; 877: 747–750.

    Article  PubMed  Google Scholar 

  • Sik A, Penttonen M, Ylinen A, Buzsâki G.: Hippocampal CAI interneurons: An in vivo intracellular labeling study. J Neurosci 1995; 15: 6651–6665.

    PubMed  Google Scholar 

  • Simpson MD, Slater P, Deakin JF, Royston MC, Skan WJ.: Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci Lett 1989; 107: 211–215.

    Article  PubMed  Google Scholar 

  • Stone DJ, Walsh J, Benes FM.: Localization of cells preferentially expressing GAD(67) with negligible GAD(65) transcripts in the rat hippocampus. A double in situ hybridization study. Brain Res Mol Brain Res 1999; 71: 201–209.

    Article  PubMed  Google Scholar 

  • Stumpf WE, Heiss C, Sar M, Duncan GE, Drayer C.: Dexamethasone and corticosterone receptor sites. Histochem 1989; 92: 201–210.

    Article  Google Scholar 

  • Sutanto W, Handelmann G, de Bree F, de Kloet ER.: Multifaceted interaction of corticosteroids with the intracellular receptors and with membrane GABAA receptor complex in the rat brain. J Neuroendocrinol 1989; 1: 243–247.

    Article  PubMed  Google Scholar 

  • Swanson LW, Petrovich GD.: What is the amygdala? Trends Neurosci 1998; 21: 323–331.

    Article  PubMed  Google Scholar 

  • Tamminga CA.: Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 1998; 12: 21–36.

    Article  PubMed  Google Scholar 

  • Thierry AM, Blanc G, Sobel A, Stinus L, Glowinski J.: Dopaminergic terminals in the rat cortex. Science 1973; 182: 499–501.

    Article  PubMed  Google Scholar 

  • Todtenkopf MS, Benes FM.: Distribution of glutamate decarboxylase65 immunoreactive puncta on pyramidal and nonpyramidal neurons in hippocampus of schizophrenic brain. Synapse 1998a; 29: 323–332.

    Article  PubMed  Google Scholar 

  • Todtenkopf MS, Benes FM.: Distribution of glutamate decarboxylase 65 immunoreactive puncta on pyramidal and nonpyramidal neurons in hippocampus of schizophrenic brain. Synapse 1998b; 29: 323–332.

    Article  PubMed  Google Scholar 

  • Van Hoesen GW, Morecraft RJ, Vogt BA.: Connections of the monkey cingulate cortex. In: Neurobiology of Cingulate Cortex and Limbic Thalamus (Vogt BA, Gabriel M, eds), 1993;pp 249–284. Birkhauser: Boston.

    Google Scholar 

  • Verwer RW, Van Vulpen EH, Van Uum JF.: Postnatal development of amygdaloid projections to the prefrontal cortex in the rat studied with retrograde and anterograde tracers. J Comp Neurol 1996; 376: 75–96.

    Article  PubMed  Google Scholar 

  • Vincent SL, Adamec E, Sorensen I, Benes FM.: The effects of chronic haloperidol administration on GABA- immunoreactive axon terminals in rat medial prefrontal cortex. Synapse 1994; 17: 26–35.

    Article  PubMed  Google Scholar 

  • Vita A, Sacchetti E.: Developmental brain abnormalities in schizophrenia: contributions of genetic and perinatal factors. Arch Gen Psychiatry 1995; 52: 157–159.

    PubMed  Google Scholar 

  • Vogt BA, Pandya DN.: Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 1987; 262: 271–289.

    Article  PubMed  Google Scholar 

  • Vogt BA, Pandya DN, Rosene DL.: Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 1987; 262: 256–270.

    Article  PubMed  Google Scholar 

  • Weinberger DR.: On the plausibility of “The neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 1996; 14: 1S - 11S.

    Article  PubMed  Google Scholar 

  • Woods BT.: Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 1998; 155: 1661–1670.

    PubMed  Google Scholar 

  • Zhang WQ, Rogers BC, Tandon P, Hudson PM, Sobotka Ti, Hong JS, Tilson HA.: Systemic administration of kainic acid increases GABA levels in perfusate from the hippocampus of rats in vivo. Neurotoxicol 1990; 11: 593–600.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benes, F.M., Berretta, S. (2002). Defining the Role of Specific Limbic Circuitry in the Pathophysiology of Schizophrenia and Bipolar Disorder. In: Agam, G., Everall, I.P., Belmaker, R.H. (eds) The Postmortem Brain in Psychiatric Research. Neurobiological Foundation of Aberrant Behaviors, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3631-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3631-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4921-9

  • Online ISBN: 978-1-4757-3631-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics