The Bornological Tensor Product of two Riesz spaces: Proof and Background Material

  • G. Buskes
  • A. van Rooij
Part of the Developments in Mathematics book series (DEVM, volume 7)


This paper is a companion to [2]. The main result in this paper is Theorem 7.1.


Tensor Product Banach Lattice Riesz Space Riesz Ideal Riesz Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. D. Aliprantis and O. Burkinshaw, Positive Operators. (1985) Acad. Press, New York-London.zbMATHGoogle Scholar
  2. [2]
    G. Buskes and A. van Rooij, The tensor product of two bornological Riesz spaces. In these Proceedings, 3–9.Google Scholar
  3. [3]
    D. H. Fremlin, Tensor products of Archimedean vector lattices. Amer. J. Math. 94 (1972), 777–798.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    D. H. Fremlin, Tensor products of Banach lattices. Math. Ann. 211 (1974), 87–106.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    H. Hogbe-Nlend, Bornologies and Functional Analysis. Math. Studies 26 (1977), North Holland, Amsterdam-New York-Oxford.Google Scholar
  6. [6]
    G. Köthe, Topological Vector Spaces I. Springer Verlag (1969), Berlin-Heidelberg-New York.zbMATHCrossRefGoogle Scholar
  7. [7]
    W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, I. (1971) North-Holland, Amsterdam-New York-Oxford.Google Scholar
  8. [8]
    A. C. Zaanen, Riesz Spaces, II. (1983) North-Holland, Amsterdam-New York-Oxford .zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • G. Buskes
    • 1
  • A. van Rooij
    • 2
  1. 1.Department of MathematicsUniversity of MississippiUniversityUSA
  2. 2.Department of Mathematics, ToernooiveldCatholic UniversityNijmegenthe Netherlands

Personalised recommendations