Stone’s Real Gelfand Duality in Pointfree Topology

  • B. Banaschewski
Part of the Developments in Mathematics book series (DEVM, volume 7)


The familiar 1940 result of M. H. Stone characterizing the rings of real-valued continuous functions on compact Hausdorff spaces as certain partially ordered rings is obtained here in its pointfree form, replacing the spaces in question by appropriate frames, which avoids the classical recourse to the choice-dependent existence of maximal ideals. The main tools for this are a direct proof that the partially ordered rings involved are f-rings, the pointfree notion of rings of real-valued continuous functions, and the representation of archimedean bounded f-rings as rings of that kind.


Prime Ideal Maximal Ideal Ring Homomorphism Compact Hausdorff Space Regular Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. N. Ball and A. W. Hager, On the localic Yosida representation of an archimedean lattice ordered group with weak order unit. J. Pure & Appl. Alg. 70 (1991), 17–43.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    B. Banaschewski, The power of the ultrafilter theorem. J. London Math. Soc. 27 (1983), 193–202.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    B. Banaschewski, Pointfree topology and the spectra of f-rings. in Ord. Alg. Struct. Proc. Curaçao Conf. on Part. Ord. Alg. Systems (1995); W. C. Holland & J. Martinez, Eds. (1997), Kluwer Acad. Publ., Dordrecht, 123–148.Google Scholar
  4. [4]
    B. Banaschewski, The Real Numbers in Pointfree Topology. Textos de Matemática Série B, 12 (1997), Departamento de Matemática da Universidade Coimbra.zbMATHGoogle Scholar
  5. [5]
    B. Banaschewski, f-Rings and the Stone- Weierstrass Theorem. Order; to appear.Google Scholar
  6. [6]
    B. Banaschewski, Ring theory and pointfree topology. (2001), McMaster University preprint.Google Scholar
  7. [7]
    E. Bishop, Foundations of Constructive Analysis. McGraw-Hill (1967), New York.zbMATHGoogle Scholar
  8. [8]
    M. P. Fourman and J. M. E. Hyland, Sheaf Models for Analysis. Applications of Sheaves, Springer LNM 753 (1979), 280–301.MathSciNetCrossRefGoogle Scholar
  9. [9]
    P. T. Johnstone, Stone spaces. Cambridge Studies Adv. Math. 3 (1982), Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  10. [10]
    A. Joyal, Theorie des topos et le théorème de Barr. Tagungsbericht Category Theory Meeting (1977), Oberwolfach.Google Scholar
  11. [11]
    J. J. Madden, Frames associated with an abelian group. Trans. AMS 331 (1992), 265–279.MathSciNetzbMATHGoogle Scholar
  12. [12]
    J. J. Madden and J. Vermeer, Epicomplete archimedean l-groups via a localic Yosida theorem. J. Pure & Appl. 68 (1990), 243–252.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    M. H. Stone, A general theory of spectra I. Proc. Nat. Acad. Sci. USA 26 (1940), 280–283.CrossRefGoogle Scholar
  14. [14]
    J. J. C. Vermeulen, The constructive expansion of the binomial (1–X)1/2. (1999), University of Cape Town preprint.Google Scholar
  15. [15]
    S. Vickers, Topology via Logic. Cambridge Tracts Theor. Comp. Sci. 5 (1985), Cambridge University Press, Cambridge.Google Scholar
  16. [16]
    E. Witt, Lectures on the infinitesimal calculus. Summer Semester 1948, Hamburg University.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • B. Banaschewski
    • 1
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada

Personalised recommendations