Skip to main content

Old and New Unsolved Problems in Lattice-Ordered Rings that need not be f-Rings

  • Chapter
Ordered Algebraic Structures

Part of the book series: Developments in Mathematics ((DEVM,volume 7))

Abstract

Recall that a lattice-ordered ring or l-ring A(+, •, ∨, ∧) is a set together with four binary operations such that A(+, •) is a ring, A(∨, ∧) is a lattice, and letting P = {aA : a ∨ 0 = a{, we have both P + P and PP contained in P. For aA, we let a + = a ∨ 0, a - = (-a) and |a| = a ∨ (-a). It follows that a = a + - a -, |a| = a + + a -, and for any a, bA, |aa+b| < |a|+ |b| and |ab| < |a| |b|. As usual a < b means (b–a) ∈ P. We leave it to the reader to fill in what is meant by a lattice-ordered algebra over a totally ordered field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Aliprantis and O. Burkinshaw, Positive Operators. (1985) Academic Press, Inc., Orlando, FL.

    MATH  Google Scholar 

  2. G. Birkhoff and R. S. Pierce, Lattice-ordered rings. Anais. Acad. Brasil Cien. 29 (1956), 41–69.

    MathSciNet  Google Scholar 

  3. P. Conrad and J. Dauns, An embedding theorem for lattice-ordered fields. Pacific J. Math. 30 (1969), 385–398.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Dauns, Lattice ordered division rings exist. Ord. Alg. Struct. (Curaçao, 1988), W. C. Holland & J. Martinez, (1989) Math. Appl. 55 Kluwer Acad. Publ., Dordrecht, 229–234.

    Google Scholar 

  5. D. Feldman and M. Henriksen, f-Rings, subdirect products of totally ordered rings, and the prime ideal theorem. Proc. Ned. Akad. Wetensh. 91 (1988), 121–126.

    MathSciNet  Google Scholar 

  6. M. Henriksen, On difficulties in embedding lattice-ordered integral domains in lattice-ordered fields. General Topology and its Relations to Modern Analysis and Algebra III; Proceedings of the Third Prague Topological Symposium (1971), Academia, Prague; (1972) Academic Press, New York, 183–185.

    Google Scholar 

  7. M. Henriksen, A survey of f-rings and some of their generalizations. Ord. Alg. Struct. (Curaçao, 1995), W. C. Holland & J. Martinez, (1997) Kluwer Acad. Publ., 1–26.

    Google Scholar 

  8. M. Henriksen and R. Kopperman, A general theory of structure spaces with applications to spaces of prime ideals. Alg. Universalis 28 (1991), 349–376.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Ma, The quotient rings of a class of lattice-ordered Ore domains. Alg. Universalis, to appear.

    Google Scholar 

  10. J. Ma, Finite-dimensional algebras that do not admit a lattice order. Preprint.

    Google Scholar 

  11. R. A. McHaffey, A proof that the quaternions do not form a lattice-ordered algebra. Proc. Iraqi Sci. Soc. 5 (1962), 70–71.

    MathSciNet  Google Scholar 

  12. J. Ma and P. Wojciechowski, A proof of the Weinberg conjecture. Proc. AMS, to appear; (preprint available) .

    Google Scholar 

  13. J. Ma and P. Wojciechowski, Lattice orders on matrix algebras. Submitted; (preprint available) .

    Google Scholar 

  14. J. Ma and P. Wojciechowski, Structure spaces of maximalℓ-ideals of latticeordered rings. In these Proceedings, 261–274.

    Google Scholar 

  15. R. S. Pierce, Review of [Mc62.]. MR 27 (1964), #5706.

    Google Scholar 

  16. R. Redfield, Constructing lattice-ordered fields and division rings. Bull. Austral. Math. Soc. 40 (1989), 365–369.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Redfield, Lattice-ordered fields as convolution algebras. J. Algebra 153 (1992), 319–356.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Redfield, Unexpected lattice-ordered quotient structures. Ordered Algebraic Structures; Nanjing (2001); Gordon and Breach, Amsterdam.

    Google Scholar 

  19. R. Redfield, Subfields of lattice-ordered fields that mimic maximal totally ordered subfields. Czech. Math J.. 51 (126) (2001), 143–161.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Schwartz, Lattice-ordered fields. Order 3 (1986), 179–194.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. A. Steinberg, On the scarcity of lattice-ordered matrix algebras II. Proc. AMS 128 (2000), 1605–1612.

    Google Scholar 

  22. H. Subramanian, Kaplansky–s theorem for frings. Math. Annalen 179 (1968), 70–73.

    Article  MATH  Google Scholar 

  23. E. Weinberg, On the scarcity of lattice-ordered matrix rings. Pacific J. Math. 19 (1966), 561–571.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. R. Wilson, Lattice orderings on the real field. Pacific J. Math. 63 (1976), 571–577.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. R. Wilson, Anti- f-rings. Ordered Groups (Proc. Conf., Boise State Univ., Boise, Idaho, 1978), Lecture Notes in Pure and Appl. Math. 62 (1980), M. Dekker, New York, 47–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henriksen, M. (2002). Old and New Unsolved Problems in Lattice-Ordered Rings that need not be f-Rings. In: Martínez, J. (eds) Ordered Algebraic Structures. Developments in Mathematics, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3627-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3627-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5225-7

  • Online ISBN: 978-1-4757-3627-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics