Scarf Type Algorithms

  • G. Isac
  • V. A. Bulavsky
  • V. V. Kalashnikov
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 63)


Citing Scarf (1973), one of the major triumphs of mathematical economics has been the proof of the existence of a solution for the neoclassic model of economic equilibrium. When cast in a mathematical form the general equilibrium model becomes a system of simultaneous equations and inequalities so complex that the existence of a solution can be guaranteed only by an appeal to fixed point theorems rather than by more elementary and constructively oriented techniques.


Zero Point Piecewise Linear Approximation Intersection Theorem Piecewise Linear Path Ratio Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allgower, E.L. and Georg, K. Numerical Continuation Methods: An Introduction. Berlin: Springer-Verlag, 1990.zbMATHCrossRefGoogle Scholar
  2. Brouwer LEJ. Uber Abbildung von Mannigfaltigkeit. Mathematische Annalen. 1912; 71: 97–115.zbMATHCrossRefGoogle Scholar
  3. Browder FE. On continuity of fixed points under deformation of continuous mapping. Summa Brasiliensis Mathematicae. 1960; 4: 183–191.MathSciNetGoogle Scholar
  4. Brown DJ, DeMarzo PM and Eaves BC. Computing zeros of sections of vector bundles using homotopies and relocalization. Mathematics of Operations Research. 1996; 21: 26–43.MathSciNetzbMATHCrossRefGoogle Scholar
  5. DeMarzo PM and Eaves BC. Computing equilibria of GEI by relocalization on a Grassmann manifold. Journal of Mathematical Economics. 1996; 26: 479–497.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Eaves BC. 1. On the basic theory of complementarity. Math. Programming. 1971; 1: 68–75.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Eaves BC. 2. Homotopies for computation of fixed points. Math. Programming. 1972; 3: 1–22.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Freidenfelds J. A set intersection theorem and applications. Math. Programming. 1974; 7: 199–211.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Fujishige S, and Yang Z. A lexicographic algebraic theorem and its applications. Linear Algebra and its Applications. 1998; 279: 75–91.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Hartman P, and Stampacchia G. On some nonlinear elliptic differential functional equations. Acta Mathematica. 1966; 115: 271–310.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Herings PJJ. On the existence of a continuum of constrained equilibria. Journal of Mathematical Economics. 1998; 30: 257–273.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Herings PJJ, and Talman AJJ. Intersection theorems with a continuum of intersection points. J. Optim. Theory Appl. 1998; 96: 311–335.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Herings PJJ, Talman AJJ, and Yang Z. 1. The computation of a continuum of constrained equilibria. Mathematics of Operations Research. 1996; 21: 675–696.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Herings PJJ, Talman AJJ, and Yang Z. 2. Variational Inequality Problems with a Continuum of Solutions: Existence and Computation. Discussion Paper No. 9972, CentER, Tilburg University, Tilburg, The Netherlands, 1999.Google Scholar
  15. Kakutani S. A generalization of Brouwer’s fixed point theorem. Duke Mathematical Journal. 1941; 8: 457–459.MathSciNetCrossRefGoogle Scholar
  16. Knaster B, Kuratowski C, and Mazurkiewicz C. Ein Beweis des Fixpunktsatzes fur n-dimensionale Simplexe. Fundamenta Matematicae. 1929; 14: 132–137.zbMATHGoogle Scholar
  17. van der Laan G and Tollman AJJ. A restart algorithm for computing fixed points without an extra dimension. Math. Programming. 1979; 17: 74–84.MathSciNetzbMATHCrossRefGoogle Scholar
  18. van der Laan G, Talman AJJ, and Yang Z. Existence and approximation of robust solutions of variational inequality problems over polytopes. SIAM J. Control Optim. 1998; 37: 333–352.CrossRefGoogle Scholar
  19. MasColell A. A note on a theorem of F. Browder. Math. Programming. 1974; 6: 229–233.MathSciNetCrossRefGoogle Scholar
  20. Scarf H. The approximation of fixed points by a continuous mapping. SIAM J. Appl. Math. 1967; 15: 1328–1343.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Scarf, H., Hansen, T. The Computation of Economic Equilibria. New Haven-London: Yale University Press, 1973.zbMATHGoogle Scholar
  22. Schalk S and Talman AJJ. “Rationing Equilibia under General Price Rigidities”. Mimeo, Tilburg University, Tilburg, The Netherlands, 1999.Google Scholar
  23. Talman AJJ and Yamamoto Y. A simplicial algorithm for stationary point problems on polytopes. Math. Oper. Res. 1989; 14: 383–399.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Todd, M.J. The Computation of Fixed Points and Applications. Lecture Notes in Economics and Mathematical Systems 124. Berlin: Springer-Verlag, 1976.zbMATHCrossRefGoogle Scholar
  25. Yamamoto Y. A path-following procedure to find a proper equilibrium of finite games. Intern. J. Game Theory. 1993; 22: 249–259.zbMATHCrossRefGoogle Scholar
  26. Yang Z. 1. A simplicial algorithm for computing robust stationary points of a continuous function on the unit simplex. SIAM J. Control Optim. 1996; 34: 191–206.CrossRefGoogle Scholar
  27. Yang Z. 2. Computing Equilibria and Fixed Points. Boston: Kluwer Academic Publishers, 1999.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • G. Isac
    • 1
  • V. A. Bulavsky
    • 2
  • V. V. Kalashnikov
    • 2
  1. 1.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada
  2. 2.Central Economics Institute (CEMI) of Russian Academy of SciencesMoscowRussia

Personalised recommendations