Advertisement

Approximative Efficiency

  • G. Isac
  • V. A. Bulavsky
  • V. V. Kalashnikov
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 63)

Abstract

A new direction in the study of efficiency, which is now in developing, is the study of ε-efficiency or of other forms of approximative efficiency. In particular, the ε-efficiency is related to the study of ε-solutions in vector optimization problems. Begining with the paper of Loridan (1984) several concepts for approximately efficient solutions of a vector optimization problem were published in the last years. We mention the works by Németh (1986), Staib (1988), Valyi (1985), Gerth (Tammer) (1978), Tammer (1992), Tammer [l]-[3] (1993), Helbig e.a. (1992), Isac (1984, 1986), Gopfert and Tammer [1],[3] (1995), Göpfert and Tammer (1998) among others. This chapter is dedicated to the study of approximative efficiency.

Keywords

Banach Space Convex Cone Topological Vector Space Convex Space Vector Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop E and Phelps RR. ‘The support functionals of a convex set’.- In: Proc. Symp. on Math., Amer. Math. Soc., Providence, RI. 1962; 7: 27–35.Google Scholar
  2. Brezis H and Browder FE. A general principle on ordered set in nonlinear functional analysis. Adv. Math. 1976; 21: 777–787.MathSciNetCrossRefGoogle Scholar
  3. Caristi J. Fixed point theorems for mappings satisfying inwardness condition. Trans. Amer. Math. Soc. 1976; 215: 241–251.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Chen GY and Huang XX. 1. A unified approach to the existing three types of variational principles for vector valued functions. Math. Meth. Oper. Res. 1998; 48: 349–357.zbMATHCrossRefGoogle Scholar
  5. Chen GY, Huang XX and Hou SH. General Ekeland’s variational principle for set-valued mappings. J. Optim. Theory Appl. 2000; 106: 151–164.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Chen GY, Huang XX and Lee GM. “Equivalents of approximate variational principle for vector valued functions and applications”. Preprint, Academia Sinica, Institute of Systems Science, Beijing, 1997.Google Scholar
  7. Danes S, Hegedus M. and Medvegyev P. A general ordering and fixed point principle in complete metric space. Acta Sci. Math. (Szeged). 1983; 46: 381–388.MathSciNetGoogle Scholar
  8. Ekeland I. 1. Sur les problemes variationals. C.R. Acad. Sci. Paris, 1972; 275: A1057–A1059.MathSciNetGoogle Scholar
  9. Ekeland I. 2. On some variational principle. J. Math. Anal. Appl. 1974; 47: 324–354.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Ekeland I. 3. Nonconvex minimization problems. Bull. Amer. Math. Soc., 1979; 1(3): 443–474.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Ekeland I. 4. Some lemmas about dynamical systems. Math. Scan. 1983; 52: 262–268.MathSciNetzbMATHGoogle Scholar
  12. Ekeland I. 5. ‘The -variational principle revised’, (notes by S. Terracini). -In: Methods on Nonconvex Analysis, A. Cellina, ed., Lecture Notes in Mathematics, Berlin-Heidelberg: Springer-Verlag Nr.1446, 1990. — P. 1–15CrossRefGoogle Scholar
  13. Gerth (Tammer) Chr. “Naherungslosungen in der Vektoroptimierung”, Seminarbereichte der Sektion Mathematik der Humblodt-Universitat zu Berlin, 1978; 90: 67–76.MathSciNetGoogle Scholar
  14. Gerth (Tammer) Chr. and Weidner P. Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 1990; 67: 297–320.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Gerth (Tammer) Chr. 1. Nichtkonvexe Dualitat in der Vektoroptimierung. Wiss. Zeitschrift TH., Leuna-Merseburg. 1983; 25(3): 357–364.MathSciNetGoogle Scholar
  16. Gerth (Tammer) Chr. 2. Nichtkonvexe Trennungssatze und deren Anwendung in der Theorie der Vektoroptimierung. Seminarbereicht Nr. 80 der Sektion Mathematik der Humboldt Universitat zu Berlin, 1986, 19–31.Google Scholar
  17. Gerth (Tammer) Chr. and Ivanov E. Dualitat fur nichtkonvexe Vektoroptimierungsprobleme. Wiss. Zeitschrift der TH Ilmenau. 1985; 31: 61–81.Google Scholar
  18. Gopfert A and Tammer Chr. 1. A new maximal point theorem. J. Functional Anal. Appl. 1995; 14: 379–390.MathSciNetGoogle Scholar
  19. Gopfert A and Tammer Chr. 2. “Maximal point theorems in product spaces and applications for multicriteria approximation problems”. Preprint Nr.26, Institute of Optimization and Stochastics, Martin-Luther Universitat, Halle-Wittenberg, Germany, 1998.Google Scholar
  20. Gopfert A and Tammer Chr. 3. -Approximate solutions and conical support points. A new maximal point theorem. Z. Angew. Math. Mech. 1995; 75: 595–596.Google Scholar
  21. Gopfert A, Trimmer Chr. and Zalinescu C. “Maximal point theorems in product spaces.” Preprint, Institute of Optimization and Stochastics, Martin-Luther Universitat, Halle-Wittenberg, Germany, 1999.Google Scholar
  22. Helbig S, Georgiev P, Pateva AD and Todorov M. ‘ε-Efficiency elements.’ Lecture on the Conference Mehrkriterielle Entscheidung, Fehrenbach, Germany, 1992.Google Scholar
  23. Henkel EC and Tammer Chr. 1. ε-Variational inequalities in partially ordered spaces. Optimization. 1996; 36: 105–118.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Henkel EC and Tammer Chr. 2. ε-Variational inequalities for vector approximation problems. Optimization. 1996; 38: 11–21.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Hyers DH, Isac G and Rassias TM. Topics in Nonlinear Analysis and Applications. Singapore, New Jersey, London, Hong-Kong: World Scientific, 1997.zbMATHCrossRefGoogle Scholar
  26. Isac G. 1. Sur l’éxistence de l’optimum de Pareto. Rèv. Mat. Univ. Parma. 1983; (4)9: 303–325.MathSciNetGoogle Scholar
  27. Isac G. 2. ‘The Ekeland’s principle and Pareto -efficiency’. — In: Multi-Objective Programming and Goal Programming, M. Timiz, ed. Lecture Notes in Econom. Math. Systems Nr.432, Springer-Verlag, 1996, 148–162.CrossRefGoogle Scholar
  28. Isac G. 3. ‘On Pareto efficiency. A general constructive existence principle’. (To appear in the volume: Combinatorial and Global Optimization, P.M. Pardalos, A. Migdalas and R. Burkard, eds.)Google Scholar
  29. Khan PQ, “On Caristi-Kirk’s theorem and Ekeland’s principle for Pareto extrema”. Preprint Nr. 357, Institute of Mathematics, Polish Academy of Science, 1986.Google Scholar
  30. Kutateladze SS. Convex ε-programming. Soviet Mathematics Doklady. 1979; 20: 1048–1050 (in Russian).MathSciNetGoogle Scholar
  31. Loridan P. 1. ε-Solutions in vector minimization problems. J. Optim. Theory Appl. 1984; 42: 265–276.MathSciNetCrossRefGoogle Scholar
  32. Loridan P. 2. Necessary conditions for ε-optimality. Math. Programming Study. 1982; 19.Google Scholar
  33. Németh AB. 1. Between Pareto efficiency and Pareto -efficiency. Optimization. 1989; 20: 615–637.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Németh AB. 2. Near to minimality in ordered vector spaces. Mathematica (Cluj). 1981; 23(46): 239–243.MathSciNetGoogle Scholar
  35. Németh AB. 3. “Summation criteria for regular cones with applicatons.” Babes-Bolyai Univ., Faculty of Math., Research Seminar, Preprint Nr.4, 1981, 99–124.Google Scholar
  36. Németh AB. 4. “Simultaneous transformation of the order and the topology by nonlinear operators.” Babes-Bolyai Univ., Faculty of Math., Research Seminar, Preprint Nr.1, 1984, 135–158.Google Scholar
  37. Németh AB. 5. A nonconvex vector minimization problem. Nonlinear Anal. Theory, Math. Appl. 1986;10: 669–678.zbMATHCrossRefGoogle Scholar
  38. Phelps RR. 1. Support cones in Banach spaces and their applications. Advances in Math. 1974; 13: 1–19.MathSciNetzbMATHCrossRefGoogle Scholar
  39. Phelps RR. 2. Convex Functions, Monotone Operators and Differentiability, 2nd ed., Lecture Notes in Math. Nr. 1364, Springer-Verlag, 1993.zbMATHGoogle Scholar
  40. Staib T. On two generalization of Pareto minimality. J. Opt. Theory Appl. 1988; 59: 289–306.MathSciNetzbMATHGoogle Scholar
  41. Strodiot JJ, Nguyen VH and Heukenes N. “ε-Optimal solutions in nondifferenfciable convex programming and some related questions”. Faculté Universitaires de Namur, Belgium, Report Nr. 80/12, 1980.Google Scholar
  42. Takahashi W. ‘Existence theorems, generalized fixed point theorems for multivalued mappings’.-In: Fixed Point Theory and Applications, M.A. Thera and J.B. Baillon, eds. Logman, Notes in Mathematics Series 252, 1991.Google Scholar
  43. Tammer Chr. 1. ‘Existence results and necessary conditions for -efficient elements’. — In: Multicriteria Decision, Brosowski e.a., eds. Proceedings of the 14-th Meeting of the German Working Group “Mehrkriterielle Entscheidigung”, Frankfurt/Main- Bern: Lang-Verlag, 1993. — P.97–110.Google Scholar
  44. Tammer Chr. 2. ‘A variational principle and fixed point theorem’. Proceedings of the 16-th IFIP Conference on System Modelling and Optimization, Compiegne, France, 1993.Google Scholar
  45. Tammer Chr. 3. A variational principle and applications for vectorial control approximation problems. (To appear: Math. Journ. Univ. Bacau, Romania.)Google Scholar
  46. Tammer Chr. 4. A genaralization of Ekeland’s variational principle. Optimization. 1992: 25: 129–141.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Tammer Chr. 5. ‘Necessary conditions for approxiamtely efficient solutions of vector approximation’.- In: Proceedings of the 2nd Conference on Approximation and Optimization, Havana, Cuba, 1993.Google Scholar
  48. Tanino T and Sawaragi Y. Conjugate maps and duality in multiobjective optimization. J. Optim. Theory Appl. 1980; 31: 473–499.MathSciNetzbMATHCrossRefGoogle Scholar
  49. Thierfelder J. Subdifferentiale and Vektoroptimierung. Wiss. Zeitschrift TH Ilmenau. 1991; 37(3): 89–100.MathSciNetzbMATHGoogle Scholar
  50. Valyi I. Approximate saddle-point theorems in vector optimization. J. Optim. Theory Appl. 1985; 55: 435–448.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • G. Isac
    • 1
  • V. A. Bulavsky
    • 2
  • V. V. Kalashnikov
    • 2
  1. 1.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada
  2. 2.Central Economics Institute (CEMI) of Russian Academy of SciencesMoscowRussia

Personalised recommendations