Advertisement

Synthetic aperture mapping and imaging

  • Manell E. Zakharia
  • Jacques Châtillon
Chapter

Abstract

Synthetic aperture processing for seabed imaging has seen a renewed interest during recent years in both civilian and military applications (see the special issue of the IEEE Journ. of Ocean. Eng. January 1992). Towards the end of the eighties, several prototype systems were developed.

Keywords

Autonomous Underwater Vehicle Slant Range Platform Position Sidescan Sonar Elementary Scatterer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adams, A., Lawlor, M., Riyait, V., Hinton, O., and Sharif, B. (1996). A real-time synthetic aperture sonar system. IEE Proceedings on Radar, Sonar and Navigation, 143(3): 169–176. Special issue: Recent Advances in Sonar and Its Applications in the Ocean.CrossRefGoogle Scholar
  2. [2]
    Altes, R. (1976). Sonar for generalized target description and its similarity to animal echolocation systems. J. Acoust. Soc. Am., 59 (1): 97–105.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Altes, R. and Reese, W. (1975). Doppler tolerant classification of distributed targets a bionic sonar. 11(5): 708–722.Google Scholar
  4. [4]
    Bilge, H., Karaman, M., and O’Donnel, M. (1996). Motion estimation using common spatial frequencies in synthetic aperture imaging. In IEEE Int. Ultrason. Symp, pp. 1551–1554, San Antonio, Texas (USA).Google Scholar
  5. [5]
    Blacknell, D. and Quegan, S. (1990). Motion compensation of airborne synthetic aperture radar using autofocus. J. Geophys. of Res., 7(3):168–182.Google Scholar
  6. [6]
    Bouhier, M. and Zakharia, M. (1990). ACID: A MAST project on ACoustical Imaging Development. Oceanology International 90, Brighton (United Kingdom).Google Scholar
  7. [7]
    Châtillon, J. (1994). Application de la synthèse d’ouverture en sonar actif. PhD thesis, INSA de Lyon (France).Google Scholar
  8. [8]
    Châtillon, J., Adams, A., Lawlor, M., and Zakharia, M. (1999). SAMI: A low frequency prototype for mapping and imaging of the seabed by means of synthetic aperture. IEEE J. on Ocean. Eng., 24(1): 4–15.CrossRefGoogle Scholar
  9. [9]
    Châtillon, J., Bouhier, M., and Zakharia, M. (1992). Synthetic aperture sonar for seabed imaging: Relative merits of narrow band and wideband approaches. IEEE J. on Ocean. Eng. 1 17(1): 95–105.CrossRefGoogle Scholar
  10. [10]
    Châtillon, J. and Zakharia, M. (1996). Self-focusing of synthetic aperture sonar in case of bottom reverberation. In Papadakis J., Editor, Third European Conference on Underwater Acoustics, pp. 433–438, Heraklio, Crete, Greece. European Commission, Brussels, Belgium.Google Scholar
  11. [11]
    Châtillon, J. and Zakharia, M. (1996). Validation of bathymetry algorithms using wideband synthetic aperture techniques by means of tank experiments. In Papadakis, J., editor, Third European Conference on Underwater Acoustics, pp. 427–431, Heraklio, Crete, Greece. European Commission, Brussels, Belgium.Google Scholar
  12. [12]
    Châtillon, J., Zakharia, M., and Bouhier, M. (1991). Quantification of the quality of images obtained by synthetic aperture sonar. Proc. of the IOA, 13(9), pp. 147–152.Google Scholar
  13. [13]
    Châtillon, J., Zakharia, M., and Bouhier, M. (1991). Synthèse d’ouverture en acoustique sous-marine: influence de l’effet Doppler différentiel. In proc. of Treizième Colloque du Groupe de Recherche et d’Etude de Traitement du Signal-GRETSI-, pp. 601–604, Juan-les-Pins (France).Google Scholar
  14. [14]
    Châtillon J., Zakharia, M., and Bouhier, M. (1992). Navigation inaccuracies in synthetic aperture sonar: simulations and experiments. In Undersea Defence Technology ’92, pp. 553–557, London (United Kingdom). Microwave Exhibitions and Publishers Ltd.Google Scholar
  15. [15]
    Châtillon, J., Zakharia, M. and Bouhier, M. (1994). Self-focusing of synthetic aperture sonar: Validation from sea data. In Bjørnø, L., editor, Second European Conference on Underwater Acoustics, pp. 727–731, Lyngby (Denmark). European Commission, Brussels, (Belgium).Google Scholar
  16. [16]
    Curlander, J. and McDonough, R. (1991). Synthetic Aperture Radar. John Wiley, New-York. 647 p.zbMATHGoogle Scholar
  17. [17]
    Cutrona, L. (1975). Comparison of sonar system performance achievable using synthetic aperture techniques with the performance achievable by more convention al means. J. Acoust. Soc. Am., 58(2): 336–348.CrossRefGoogle Scholar
  18. [18]
    de Heering, P. Simmer, K., Ochieng-Ogolla, E., and Wasiljeff, A. (1994). A deconvolution algorithm for broadband synthetic aperture data processing. IEEE J. on Ocean. Eng., 19(1):73–83.CrossRefGoogle Scholar
  19. [19]
    Gough, P. and Hayes, M. (1989). Tests results using a prototype synthetic aperture sonar. J. Acoust. Soc. Am., 6(6):2328–2333.CrossRefGoogle Scholar
  20. [20]
    Griffiths, J. and Gida, A. (1984). Use of a BBC microcomputer for synthetic aperture measurements. Proc. Of the IOA 6(6):122–128.Google Scholar
  21. [21]
    Guyonic, S. (1994). Experiments of a sonar with a synthetic aperture array moving on a rail. In Oceans ’94 Conf Record, pp. 571–576, Brest (France). MTS and IEEE publishers.Google Scholar
  22. [22]
    Huxtable, B. and Geyer, E. (1993). Motion compensation feasibility for high-resolution synthetic aperture sonar. In Oceans 93 Conf Record, pp. 1.125–1.137. MTS and IEEE publishers.Google Scholar
  23. [23]
    Johnson, K., Hayes, M., and Gough, P. (1995). A method for estimating the sub-wavelength sway of a sonar towfish. IEEE J. on Ocean. Eng., 20(4):258–267.CrossRefGoogle Scholar
  24. [24]
    Kock, W. (1972). Extending the maximum range of synthetic aperture (hologram) systems. Proc. IEEE (Left.), 60(11):1459:1460.CrossRefGoogle Scholar
  25. [25]
    Lawlor, M., Adams, A., Hinton, O., Riyait, V., and Sharif, B. (1994). Methods for increasing the azimuth resolution and mapping rate of a synthetic aperture sonar. In Oceans 94 Conf. Record, pp. 565–570, Brest (France). MTS and IEEE publishers.Google Scholar
  26. [26]
    Lawlor, M., Hinton, O., Adams, A., and Sharif, B. (1992). Design of a real-time parallel processing system for synthetic aperture sonar processing. In Undersea Defence Technology 92, pp. 275–280, London (United Kingdom). Microwave Exhibitions and Publishers Ltd.Google Scholar
  27. [27]
    Loggins, C., Christoff, J., and Pipkin, E. (1982). Results from rail synthetic aperture experiments. J. Acoust. Soc. Am., 71:85. suppl. 1.CrossRefGoogle Scholar
  28. [28]
    Mamode, M. (1981). Estimation optimale de la date d’arrivée d’un écho perturbé par l’effet Doppler. Synthèse de signaux large bande tolérants. PhD thesis, INP Grenoble (France).Google Scholar
  29. [29]
    Raven, R. (1981). Electronic stabilization for displaced phase centres systems. Technical report. U.S. patent 4244036.Google Scholar
  30. [30]
    Riyait, V., Lawlor, M., Adams, A., Hinton, O., and Sharif, B. (1994). Comparison of the mapping resolution of the acid synthetic aperture sonar with existing sidescan sonar systems. In Oceans ’94 Conf. Record, pp. 559–564, Brest (France). MTS and IEEE publishers.Google Scholar
  31. [31]
    Riyait, V., Lawlor M., Adams A., Hinton O., and Sharif, B. (1995). Real-time synthetic aperture sonar imaging using a parallel architecture. IEEE Trans. on Imag. Proc., 4(7): 1010–1019.CrossRefGoogle Scholar
  32. [32]
    Rolt, K., Milgram, J., and Schmidt, H. (1994). Broadband undersampled synthetic aperture arrays: targets stay sharp, aliases smear. Cambridge MA (USA). Acoustical Society of America 127th meeting. Abstract number: 2UW 18.Google Scholar
  33. [33]
    Rolt, K. and Schmidt, H. (1992). Azimuthal ambiguities in synthetic aperture sonar imagery and synthetic aperture radar imagery. IEEE J. on Ocean. Eng., 17(1):73–79.CrossRefGoogle Scholar
  34. [34]
    Sato, T. and Ikeda O. (1977). Sequential synthetic aperture sonar system a prototype of a synthetic aperture system. IEEE Trans. on Son. and Ultrason., SU-24(4):253–259.CrossRefGoogle Scholar
  35. [35]
    Sheriff, R. (1992). Synthetic aperture beamforming with automatic phase compensation for high frequency sonars. In Symposium on Autonomous Underwater Vehicle Technology, pp. 236–245.Google Scholar
  36. [36]
    Tonard, v. and Brussieux, M. (1997). Towards development of autofocusing schemes for phase compensation of synthetic aperture sonars. In Oceans 91 Conf Record, pp. 803–808, Halifax (Canada). MTS and IEEE publishers.Google Scholar
  37. [37]
    Tonard, V. and Châtillon, J. (1997). Acoustical imaging of extended targets by means of synthetic aperture sonar. Acustica united with Acta Acustica, 83(6): 992–997.Google Scholar
  38. [38]
    Zakharia, M. and Châtillon, J. (1994). A low frequency wideband synthetic aperture sonar prototype. Cambridge MA (USA). Acoustical Society of America 127th. meeting. Abstract number: 4aUW17.Google Scholar
  39. [39]
    Zakharia, M. and Châtillon, J. (1994). Wideband synthetic aperture sonar for bottom imaging. Theoretical aspects and experimental evaluation. Oceanology International 94, Brighton (United Kingdom). vol. 3.Google Scholar
  40. [40]
    Zakharia, M. and Châtillon, J. (1995). Synthetic Aperture Mapping and Imaging-SAMI. In Second MAST Days and EUROMAR market, pp. 1161–1171, Sorrento (Italy).Google Scholar
  41. [41]
    Zakharia, M. and Châtillon, J. (1997). SAMI: a low frequency wideband prototype for synthetic aperture mapping and imaging. Penn State PE (USA). Acoustical Society of America 133rd meeting. Abstract number; 4aUW3.Google Scholar
  42. [42]
    Zakharia, M. and Guigal, A. (1991). Étude et description de signaux tolérants à l’effet Doppler variable. In 13ème Colloque GRETSI, pp. 597–600, Juan les Pins (FR).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Manell E. Zakharia
    • 1
  • Jacques Châtillon
    • 2
  1. 1.French Naval Academy, Underwater Acoustics GroupÉcole Navale / IRENAVBrest NAVALFrance
  2. 2.INRSVANDOEUVRE cedexFrance

Personalised recommendations