Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 67))

  • 334 Accesses

Abstract

Abstract Solution of today large complex problems may need the combination of several different methods, algorithms and techniques in a distributed computing system with heterogeneous processors, usually interconnected through a communication network. In this context, Team Algorithm is presented as a general technique used to combine different methods and algorithms in a distributed computing system composed of different workstations, personal computers and/or parallel computers. Moreover, experimental results have proved that in many real world problems, Team Algorithms can benefit from the use of asynchronous implementations, speeding up the whole process with an important synergy effect, in a new appealing technique known as Parallel Asynchronous Team Algorithms.

The main idea behind Parallel Asynchronous Team Algorithms is very simple: to partition a large complex problem in small sub-problems that can be solved in different processors of a distributed system with well known sequential methods, combining the partial results of each sub-problem in such a way that a good global solution is finally found. Because each processor works at its own speed and eventually, with its own algorithms, an asynchronous implementation eliminates idle synchronization times speeding up the whole process. Team Algorithms have been successfully applied in the resolution of many engineering problems in which a synergetic effect may take place between different processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A-Teams Project Home Page, Carnegie Mellon University. URL: http://www.cs.cmu.edu/afs/cs/project/edre-22/project/ateams/WWW/.

  2. B. Barán, A study ofparallel asynchronous team algorithms, PhD thesis, Federal Univ. of Rio de Janeiro, COPPE, CS Dept., Rio de Janeiro, Brasil, 1993 (in Portuguese).

    Google Scholar 

  3. B. Barán, E. Kaszkurewicz and D.M. Falcão, Team Algorithms in Distributed Load Flow Computations, IEE Proceedings on Generation, Transmission and Distribution. Vol. 142, N° 6, November 1995, pp. 583–588.

    Article  Google Scholar 

  4. B. Barán, E. Kaszkurewicz and A. Bhaya, Parallel Asynchronous Team Algorithms: Convergence and Performance Analysis, IEEE Transactions on Parallel and Distributed Systems, Vol.7, Number 7, July 1996, pp. 677–688.

    Article  Google Scholar 

  5. B. Barán and E. Chaparro, Algoritmos Asincronos combinados en un Ambiente Heterogéneo de Red, XXIII Conferencia Latinoamericana de Informática, Valparaiso, Chile, 1997 (in Spanish).

    Google Scholar 

  6. B. Barán, E. Chaparro and N. Cáceres, A-Teams en la Optimización del Caudal Turbinado de una Represa Hidroeléctrica, Conferencia Iberoamericana de Inteligencia Artificial IBERAMIA-98, Lisbon, Portugal, 1998 (in Spanish).

    Google Scholar 

  7. B. Barán, E. Chaparro and N. Cáceres, Hydroelectric optimization using A-Teams, International Conference in Electrical Power System Operation and Management (EPSOM-98), Zurich, Switzerland, 1998.

    Google Scholar 

  8. B. Barán and F. Laufer, Topological Optimization of Reliable Networks using A-Teams, Symposium: Architecture, Tools and Algorithm for Networks, Parallel and Distributed Systems, Internacional Conference Systemics, Cybernetics and Informatics SCI’99, Orlando — Florida, United States of America, 1999.

    Google Scholar 

  9. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation — numerical methods, Prentice Hall, Englewood Cliffs, New Jersey, 1989.

    MATH  Google Scholar 

  10. A. Bhaya, E. Kaszkurewicz, and F. C. Mota, Asynchronous block-iterative methods for almost-linear equations, Lin. Algebra Appl., 1991, pp. 487–508.

    Google Scholar 

  11. C. J. Coulbourn, Reliability Issues in Telecommunication Network Planning, University of Vermont. URL: http://www.emba.uvm.edu/colbourn.

  12. C. J. Coulbourn, The Combinatorics of Network Reliability, Oxford Univ. Press, 1987.

    Google Scholar 

  13. J. Calvet and A. Titli, Overlapping vs. partitioning in block-iteration methods: application in large-scale system, Automatica 25,1989, pp. 137–145.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. P. Dusonchet, S. N. Talukdar, and H. E. Sinnot, Load flows using a combination of point Jacobi and Newton’s methods, IEEE Trans. Power Apparatus and Systems, PAS-90, 1971, pp. 941–949.

    Google Scholar 

  15. D.M. Falcão, A. L. B. Bomfim, C. R. R. Dornellas, and G. N. Taranto, Genetics Algorithms in Power Systems Optimization, V SEPOE, Recife — Brazil, 1996.

    Google Scholar 

  16. M.R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, V SEPOE, Recife — Brazil, 1996.

    Google Scholar 

  17. D.E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, San Francisco, Freeman, 1979.

    Google Scholar 

  18. M. Ikeda and D. D. Iljak, Overlapping decomposition, expansions and contractions of dynamic systems, Large Scale Systems, Vol. 1, 1980, pp. 29–38.

    MathSciNet  MATH  Google Scholar 

  19. R. H. Jan, Design of reliable networks, Comput. Oper. Res. Vol 20, 1993, pp. 29–38.

    MathSciNet  Google Scholar 

  20. E. Kaszkurewicz, A. Bhaya, and D. D. Siljak, On the convergence of parallel asynchronous block-iterative computations, Lin. Algebra Appl., 1990, pp. 139–160.

    Google Scholar 

  21. M. Mejia and E. Cantúi, DGENESIS: Software para la Ejecución de Algoritmos Genéticos Distribuidos, XX Conferencia Latinoamericana de Informática , Mexico City, Mexico, 1994 (in Spanish).

    Google Scholar 

  22. N. H. Penny, Blackboard systems: the blackboard model ofproblem solving and the evolution ofblackboard architectures, The AI Magazine, 1986.

    Google Scholar 

  23. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1988.

    MATH  Google Scholar 

  24. P. S. Souza and S. N. Talukdar, Genetics Algorithms in Asynchronous Teams, ICGA — 91, San Diego — California, 1991, pp. 392–397.

    Google Scholar 

  25. M. E. Sezer and D. D. Siljak, Nested epsilon decompositions of linear systems: weakly coupled and overlapping blocks, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 521–533.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. S. Souza and S. N. Talukdar, Genetic algorithms in asynchronous teams, in Proc. Fourth Intl. Conf. on Genetic Algorithms, California, 1991, pp. 392–397.

    Google Scholar 

  27. H. S. Stone, High Performance ComputerArchitectures, Addison-Wesley, 1971.

    Google Scholar 

  28. B. Stott, Review of load-flow calculation methods, Proc. IEEE, 1974, pp. 916–927.

    Google Scholar 

  29. B. Stott and O. Alsaç, Fast decoupled load flow, IEEE Trans. Power Apparatus and Systems, PAS-93, 1974, pp. 859–869.

    Article  Google Scholar 

  30. S. N. Talukdar, S. S. Pyo, and R. Mehrotra, Designing algorithms and assignments for distributed processing, Tech. Rep. EPRI EL-3317 RP17643, Electric Power Research Institute, 1983.

    Google Scholar 

  31. S. N. Talukdar, V. C. Ramesh, and J. C. Nixon, A distributed system of control specialists for real-time operations, in Proc. Third Symp. Expert System Appl. to Power Systems, Japan, 1991.

    Google Scholar 

  32. S. N. Talukdar, V. C. Ramesh, R. Quadrel, and R. Christie, Multiagent organizationsfor real-time operations, in Proc. of the IEEE, 1992, pp. 765–778.

    Google Scholar 

  33. M. H. M. Vale, D. M. Falcão, and E. Kaszkurewicz, Electrical power network decomposition for parallel computations, in Proc. Int’l. Conf. Circuits and Systems (ISCAS), IEEE, San Diego, California, 1992.

    Google Scholar 

  34. A. Vanelli, Solution techniques for 0–1 indefinite quadratic programming problems with applications to decomposition, PhD thesis, University of Waterloo, 1983.

    Google Scholar 

  35. A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, John and Sons, 1983.

    Google Scholar 

  36. F. F. Wu, Theoretical study of the convergence of the fast decoupled loadflow, IEEE Trans. Power Apparatus and Systems, PAS-96, 1977, pp. 268–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barán, B. (2002). Parallel Asynchronous Team Algorithms. In: Corrêa, R., Dutra, I., Fiallos, M., Gomes, F. (eds) Models for Parallel and Distributed Computation. Applied Optimization, vol 67. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3609-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3609-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5219-6

  • Online ISBN: 978-1-4757-3609-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics