Advertisement

Discrete Computing with Coarse Grained Parallel Systems: An Algorithmic Approach

  • Afonso Ferreira
  • Isabelle Guérin-Lassous
Part of the Applied Optimization book series (APOP, volume 67)

Abstract

In this chapter we shall show that coarse-grained models are well adapted to coarse grained systems and clusters. In particular, algorithms designed for such models can be efficient and portable, and can have their practical performance directly inferred from their theoretical corhplexity. Furthermore, they allow a reduction on the costs associated with software development since the main design paradigm is the use of existing sequential algorithms and communication subroutines, usually provided with the systems.

Keywords

Cluster computing coarse grained parallel computers parallel algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Akl and K. Lyons. Parallel Computational Geometry. Prentice Hall, 1993.Google Scholar
  2. [2]
    J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear expected-time algorithms for computing maxima and convex hulls. Algorithmica, pages 168–183, 2993.Google Scholar
  3. [3]
    A.A. Bertossi and M.A. Bonuccelli. Some parallel algorithms on interval graphs. Discrete Applied Mathematics, 16:101–111, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato, N. Santoro, and S. Song. Efficient parallel graph algorithms for coarse grained multicomputers and bsp. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings of ICALP’97, Lecture Notes in Computer Science, pages 390–400, 1997.Google Scholar
  5. [5]
    R. Cole. Parallel merge sort. SIAMJournal on Computing, pages 770–785, 1988.Google Scholar
  6. [6]
    D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subrarnonian, and T. von Eicken. LogP: Towards a realistic model of parallel computation. In Fifth ACM SIGPLAN Symposium on the Principles and Practice of Parallel Programming, 1993.Google Scholar
  7. [7]
    F. Dehne, A. Fabri, and C. Kenyon. Scalable and archtecture independent parallel geometric algorithms with high probability optimal time. In Proceedings of the 6th IEEE SPDP, pages 586–593. IEEE Press, 1994.Google Scholar
  8. [8]
    F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms for coarse grained multicomputers. In Proc. 9th ACM Symp. on Computational Geometry, pages 298–307, 1993.Google Scholar
  9. [9]
    X. Deng and N. Gu. Good algorithm design style for multiprocessors. In Proc. of the 6th IEEE Symposium on Parallel and Distributed Processing, pages 538–543, Dallas, USA, 1994.Google Scholar
  10. [10]
    L. Devroye and G.T. Toussaint. A note on linear expected time algorithms for finding convex hulls. Computing, 26:361–366, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    M. Diallo, A. Ferreira, and A. Rau-Chaplin. Communication-efficient deterministic parallel algorithms for planar point location and 2d Voronoi diagram. In Springer Verlag, editor, Proceedings of the 15th Symposium on Theoretical Aspects of Computer Science — STACS’98, volume 1373 of Lecture Notes in Computer Science, pages 399–409, Paris, France, 1998.Google Scholar
  12. [12]
    M. Diallo, A. Ferreira, A. Rau-Chaplin, and S. Ubeda. Scalable 2d convex hull and triangulation algorithms for coarse-grained multicomputers. Journal of Parallel and Distributed Computing, 56(1):47–70, 1999.zbMATHCrossRefGoogle Scholar
  13. [13]
    H. Edelsbrunner. Algorithms in Combinatorial Geometry. SpringerVerlag, 1987.zbMATHCrossRefGoogle Scholar
  14. [14]
    A. Fabri, F. Dehne, and A. Rau-Chaplin. Scalable parallel geometric algorithms for coarse grained multicomputers. In Proc. of the 9 th ACM g g Symposium on Computational Geometry, pages 298–307, 1993.Google Scholar
  15. [15]
    A. Ferreira. Handbook of Parallel and Distributed Computing, chapter Parallel and communication algorithms for hypercube multiprocessors, pages 568–589. McGraw-Hill, A. Zomaya edition, 1996.Google Scholar
  16. [16]
    A. Ferreira, Isabelle Guérin-Lassous, Karina Marcus, and A. Rau-Chaplin. Parallel computation on interval graphs using pc clusters: Algorithms and experiments. In D. Pritchard and J. Reeves, editors, Proceedings of Europar’98, volume 1470 of Lecture Notes in Computer Science, pages 875–886, Southampton, UK, September 1998. Springer Verlag. Distinguished Paper.Google Scholar
  17. [17]
    A. Ferreira, C. Kenyon, A. Rau-Chaplin, and S. Ubéda. d-dimensional range search on multicomputers. Algorithmica, 24(3/4):195–208, 1999. Special Issue on Coarse Grained Parallel Algorithms.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    A. Ferreira and J.M. Robson. Fast and scalable parallel algorithms for knapsack and similar problems. Journal of Parallel and Distributed Computing, 39(1):1–13, November 1996.zbMATHCrossRefGoogle Scholar
  19. [19]
    A. Ferreira and N. Schabanel. A randomized BSP algorithm for the maximal independent set problem. In Proceedings of the 4th Int. Symp. on Parallel Architectures, Algorithms and Networks, pages 284–289, 1999.Google Scholar
  20. [20]
    A. Ferreira and S. Ubéda. Ultra-fast parallel contour tracking, with applications to thinning. Pattern Recognition, 27(7):867–878, 1994.CrossRefGoogle Scholar
  21. [21]
    A. Ferreira and S. Ubéda. Computing the medial axis transform in parallel with 8 scan operations. IEEE Transactions on Pattern Analysis & Machine Intelligence (PAMI), 21(3):277–282, March 1999.CrossRefGoogle Scholar
  22. [22]
    S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In 10-th ACM Symposium on Theory of Computing, pages 114–118, 1970.Google Scholar
  23. [23]
    A.H. Gebremedhin, Guérin Lassous I., J. Gustedt, and J.A. Telle. Graph Coloring on a Coarse Grained Multiprocessor. In Proceedings of Workshop on Graph-Theoretic Concepts in Computer Science (WG’00), Lecture Notes in Computer Science. Springer Verlag, 2000. To appear.Google Scholar
  24. [24]
    A.V Gerbessiotis and L.G Valiant. Direct bulk-synchronous parallel algorithms. Journal of Parallel and Distributed Computing, pages 251–267, 1994.Google Scholar
  25. [25]
    M. Goodrich. Communication-efficient parallel sorting. In Proc. of the 28th annual ACM Symposium on Theory of Computing, Philadephia, USA, May 1996.Google Scholar
  26. [26]
    I. Guérin-Lassous, J. Gustedt, and M. Morvan. Feasability, Portabiblity, Predictability and Efficiency: Four Ambitious Goals for the Design and Implementation of Parallel Coarse Grained Graph Algorithms. Technical Report 3885, INRIA, 2000.Google Scholar
  27. [27]
    U.I. Gupta, D.T. Lee, and J.Y.-T. Leung. An optimal solution for the channel-assignment problem. IEEE Transaction on Computers, C28:807–810, 1979.CrossRefGoogle Scholar
  28. [28]
    Guérin Lassous I. and J. Gustedt. List Ranking on PC clusters. In Proceedings of Workshop on Algorithm Engineering (WAE’00), Lecture Notes in Computer Science. Springer Verlag, 2000. To appear.Google Scholar
  29. [29]
    R. M. Karp and V. Ramachandran. Handbook of Theoretical Computer Science, volume A: Algorithms and Complexity, chapter A survey of parallel algorithms for shared-memory machines. Elsevier/MIT Press, J. van Leeuwen edition, 1990.Google Scholar
  30. [30]
    F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.zbMATHGoogle Scholar
  31. [31]
    R. Miller and Q. Stout. Efficent parallel convex hull algorithms. IEEE Transcations on Computers, 37(12):1605–1618, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    H. Mongelli and S. Song. A range minima parallel algorithm for coarse grained multicomputers. In Proc. ofIrregular’99, volume 1586 of Lecture Notes in Computer Science, pages 1075–1084. Springer-Verlag, 1999.Google Scholar
  33. [33]
    S. Olariu. Handbook of Parallel and Distributed Computing, chapter Parallel graph algorithms, pages 355–403. McGraw-Hill, A. Zomaya edition, 1996.Google Scholar
  34. [34]
    F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer Verlag, 1985.CrossRefGoogle Scholar
  35. [35]
    L. Valiant. A bridging model for parallel computation. Communication ofACM, 38(8):103–111, 1990.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Afonso Ferreira
    • 1
  • Isabelle Guérin-Lassous
    • 2
  1. 1.Mascotte, CNRS - I3S - INRIASophia AntipolisFrance
  2. 2.ReMaP, CNRS - ENS de Lyon - INRIALyonFrance

Personalised recommendations