Skip to main content

Insulin and Insulin-Like Growth Factor-1 Receptors and Signaling Pathways: Similarities and Differences

  • Chapter
Hormone Signaling

Part of the book series: Endocrine Updates ((ENDO,volume 17))

  • 150 Accesses

Abstract

Insulin and the insulin-like growth factors (IGFs) play critical roles in normal physiology. Pathological perturbations in these hormone systems result in serious medical consequences. Insulin is considered to be primarily a “metabolic” hormone with important effects on the normal homeostasis of glucose, fat and protein. If insulin production or insulin action at target tissues are impaired, diabetes and numerous concomitant conditions of insulin resistance including hypertension and hypertriglyceridemia will ensue. The IGFs, on the other hand, primarily control growth and development of the organism. IGFs control growth by facilitating cellular proliferation in terminally differentiated cells and by inhibiting apoptosis. In adult tissues, these growth factors also have various tissue-specific functions. While there are clear differences in the physiological roles of insulin and the IGFs, these hormones/growth factors also share many similarities. The hormones have similar tertiary structures, and they share ~50% amino acid identity. Both insulin and IGFs interact with specific cell surface receptors that represent one sub-class of the tyrosine kinase receptor family. The signaling cascades induced by activation of the insulin receptor (IR) and IGF-I receptor (IGF-IR) are highly overlapping, with some subtle differences, as will be discussed in more detail below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ullrich, A., Gray, A., Tam, A.W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., Le Bon, T., Kathuria, S., and Chen, E. (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. Embo J 5, 2503–2512.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.C., and Tsubokawa, M. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756–761.

    Article  PubMed  CAS  Google Scholar 

  3. Garrett, T.P., McKern, N.M., Lou, M., Frenkel, M.J., Bentley, J.D., Lovrecz, G.O., Elleman, T.C., Cosgrove, L.J. and Ward, C.W. (1998) Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature 394, 395–399.

    Article  CAS  Google Scholar 

  4. Hubbard, S.R. (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. Embo J 16, 5572–5581.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Hubbard, S.R., Wei, L., Ellis, L. and Hendrickson, W.A. (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754.

    Article  PubMed  CAS  Google Scholar 

  6. Kahn, C.R., Baird, K.L., Flier, J.S., Grunfeld, C., Harmon, J.T., Harrison, L.C., Karlsson, F.A., Kasuga, M., King, G.L., Lang, U.C., Podskalny, J.M. and Van Obberghen, E. (1981) Insulin receptors, receptor antibodies, and the mechanism of insulin action. Recent Prog Horm Res 37, 477–538.

    Google Scholar 

  7. Kristensen, C., Wiberg, F.C., Schaffer, L. and Andersen, A.S. (1998) Expression and characterization of a 70-kDa fragment of the insulin receptor that binds insulin. Minimizing ligand binding domain of the insulin receptor. J Biol Chem 273, 1778017786.

    Google Scholar 

  8. Kristensen, C., Wiberg, F.C. and Andersen, A.S. (1999) Specificity of insulin and insulin-like growth factor I receptors investigated using chimeric mini-receptors. Role of C-terminal of receptor alpha subunit. J Biol Chem 274, 37351–37356.

    Article  PubMed  CAS  Google Scholar 

  9. Leconte, I., Carpentier, J.L. and Clauser, E. (1994) The functions of the human insulin receptor are affected in different ways by mutation of each of the four Nglycosylation sites in the beta subunit. J Biol Chem 269, 18062–18071.

    PubMed  CAS  Google Scholar 

  10. Elleman, T.C., Frenkel, M.J., Hoyne, P.A., McKern, N.M., Cosgrove, L., Hewish, D.R., Jachno, K.M., Bentley, J.D., Sankovich, S.E. and Ward, C.W. (2000) Mutational analysis of the N-linked glycosylation sites of the human insulin receptor. Biochem J 347 Pt 3, 771–779.

    Article  Google Scholar 

  11. Schumacher, R., Mosthaf, L., Schlessinger, J., Brandenburg, D. and Ullrich, A. (1991) Insulin and insulin-like growth factor-1 binding specificity is determined by distinct regions of their cognate receptors. J Biol Chem 266, 19288–19295.

    PubMed  CAS  Google Scholar 

  12. Kurose, T., Pashmforoush, M., Yoshimasa, Y., Caroll, R., Schwartz, G.P., Burke, G.T., Katsoyannis, P.G., Steiner, D.F. Cross-linking of a B25 azidophenylananine insulin derivative to the carboxyl-terminal region of the alpha-subunit of the insulin receptor. (1994) Identification of a new insulin-binding domain in the insulin receptor. J Biol Chem 269, 29190–29197

    Google Scholar 

  13. Williams, P.F., Mynarcik, D.C., Yu, G.Q., Whittaker, J. (1995) Mapping of an NH2- terminal ligand binding site of the insulin receptor by alanine scanning mutagenesis. J Biol Chem 270, 3012–3016

    Article  PubMed  CAS  Google Scholar 

  14. Kaburagi, Y., Momomura, K., Yamamoto-Honda, R., Tobe, K., Tamori, Y., Sakura, H., Akanuma, Y., Yazaki, Y. and Kadowaki, T. (1993) Site-directed mutagenesis of the juxtamembrane domain of the human insulin receptor. J Biol Chem 268, 1661016622.

    Google Scholar 

  15. White, M.F., Livingston, J.N., Backer, J.M., Lauris, V., Dull, T.J., Ullrich, A. and Kahn, C.R. (1988) Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 54, 641–649.

    Article  Google Scholar 

  16. Keegan, A.D., Nelms, K., White, M., Wang, L.M., Pierce, J.H. and Paul, W.E. (1994) An IL-4 receptor region containing an insulin receptor motif is important for IL-4mediated IRS-1 phosphorylation and cell growth. Cell 76, 811–820.

    Article  PubMed  CAS  Google Scholar 

  17. Koval, A.P., Blakesley, V.A., Roberts Jr, C.T., Zick, Y. and Leroith, D. (1998) Interaction in vitro of the product of the c-Crk-II proto-oncogene with the insulin-like growth factor I receptor. Biochem J 330, 923–932.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Eck, M.J., Dhe-Paganon, S., Trub, T., Nolte, R.T. and Shoelson, S.E. (1996) Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85, 695–705.

    Article  Google Scholar 

  19. Paz, K., Voliovitch, H., Hadari, Y.R., Roberts, C.T., Jr., LeRoith, D. and Zick, Y. (1996) Interaction between the insulin receptor and its downstream effectors. Use of individually expressed receptor domains for structure/function analysis. J Biol Chem 271, 6998–7003.

    Google Scholar 

  20. Haft, C.R., Klausner, R.D. and Taylor, S.I. (1994) Involvement of dileucine motifs in the internalization and degradation of the insulin receptor. J Biol Chem 269, 2628626294.

    Google Scholar 

  21. Tavare, J.M. and Siddle, K. (1993) Mutational analysis of insulin receptor function: consensus and controversy. Biochim Biophys Acta 1178, 21–39.

    Article  PubMed  CAS  Google Scholar 

  22. LeRoith, D., Werner, H., Beitner-Johnson, D. and Roberts, C.T., Jr. (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16, 143–163.

    PubMed  CAS  Google Scholar 

  23. Cheatham, B. and Kahn, C.R. (1995) Insulin action and the insulin signaling network. Endocr Rev 16, 117–142.

    PubMed  CAS  Google Scholar 

  24. Pang, L., Milarski, K.L., Ohmichi, M., Takata, Y., Olefsky, J.M. and Saltiel, A.R. (1994) Mutation of the two carboxyl-terminal tyrosines in the insulin receptor results in enhanced activation of mitogen-activated protein kinase. J Biol Chem 269, 10604–10608.

    PubMed  CAS  Google Scholar 

  25. Maegawa, H., McClain, D.A., Freidenberg, G., Olefsky, J.M., Napier, M., Lipari, T., Dull, T.J., Lee, J. and Ullrich, A. (1988) Properties of a human insulin receptor with a COOH-terminal truncation. II. Truncated receptors have normal kinase activity but are defective in signaling metabolic effects. J Biol Chem 263, 8912–8917.

    Google Scholar 

  26. Thies, R.S., Ullrich, A. and McClain, D.A. (1989) Augmented mitogenesis and impaired metabolic signaling mediated by a truncated insulin receptor. J Biol Chem 264, 12820–12825.

    PubMed  CAS  Google Scholar 

  27. Surmacz, E., Sell, C., Swantek, J., Kato, H., Roberts, C.T., Jr., LeRoith, D. and Baserga, R. (1995) Dissociation of mitogenesis and transforming activity by C-terminal truncation of the insulin-like growth factor-I receptor. Exp Cell Res 218, 370–380.

    Article  Google Scholar 

  28. Faria, T.N., Blakesley, V.A., Kato, H., Stannard, B., LeRoith, D. and Roberts, C.T., Jr. (1994) Role of the carboxyl-terminal domains of the insulin and insulin-like growth factor I receptors in receptor function. J Biol Chem 269, 13922–13928.

    PubMed  CAS  Google Scholar 

  29. Kalloo-Hosein, H.E., Whitehead, J.P., Soos, M., Tavare, J.M., Siddle, K. and O’Rahilly, S. (1997) Differential signaling to glycogen synthesis by the intracellular domain of the insulin versus the insulin-like growth factor-1 receptor. Evidence from studies of TrkC-chimeras. J Biol Chem 272, 24325–24332.

    Google Scholar 

  30. Heldin, C.H. (1995) Dimerization of cell surface receptors in signal transduction. Cell 80, 213–223.

    Article  PubMed  CAS  Google Scholar 

  31. van der Geer, P., Hunter, T. and Lindberg, R.A. (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10, 251–337.

    Article  Google Scholar 

  32. Lee, J., Pilch, P.F., Shoelson, S.E. and Scarlata, S.F. (1997) Conformational changes of the insulin receptor upon insulin binding and activation as monitored by fluorescence spectroscopy. Biochemistry 36, 2701–2708.

    Article  PubMed  CAS  Google Scholar 

  33. Songyang, Z., Shoelson, S.E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W.G., King, F., Roberts, T., Ratnofsky, S., and Lechleider, R.J.. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778.

    Article  Google Scholar 

  34. Staubs, P.A., Reichart, D.R., Saltiel, A.R., Milarski, K.L., Maegawa, H., Berhanu, P., Olefsky, J.M. and Seely, B.L. (1994) Localization of the insulin receptor binding sites for the SH2 domain proteins p85, Syp, and GAP. J Biol Chem 269, 27186–27192.

    Google Scholar 

  35. Lavan, B.E., Lane, W.S. and Lienhard, G.E. (1997) The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family J Biol Chem 272, 11439–11443.

    Google Scholar 

  36. Myers, M.G., Jr. and White, M.F. (1996) Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol 36, 615–658.

    Article  Google Scholar 

  37. Araki, E., Lipes, M.A., Patti, M.E., Bruning, J.C., Haag, B., 3rd, Johnson, R.S. and Kahn, C.R. (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372, 186–190.

    Article  Google Scholar 

  38. Withers, D.J., Gutierrez, J.S., Towery, H., Burks, D.J., Ren, J.M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G.I., Bonner-Weir, S. and White, M.F. (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904.

    Article  Google Scholar 

  39. Nystrom, F.H. and Quon, M.J. (1999) Insulin signalling: metabolic pathways and mechanisms for specificity. Cell Signal 11, 563–574.

    Article  Google Scholar 

  40. Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B. and Cohen, P. (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Cuff Biol 7, 261–269.

    Google Scholar 

  41. Paz, K., Liu, Y.F., Shorer, H., Hemi, R., LeRoith, D., Quon, M., Kanety, H., Seger, R. and Zick, Y. (1999) Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem 274, 28816–28822.

    Article  Google Scholar 

  42. Hotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F. and Spiegelman, B.M. (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 271, 665–668.

    Article  Google Scholar 

  43. Walton, K.M. and Dixon, J.E. (1993) Protein tyrosine phosphatases. Annu Rev Biochem 62, 101–120.

    Article  Google Scholar 

  44. Lammers, R., Bossenmaier, B., Cool, D.E., Tonics, N.K., Schlessinger, J., Fischer, E.H. and Ullrich, A. (1993) Differential activities of protein tyrosine phosphatases in intact cells. J Biol Chem 268, 22456–22462.

    Google Scholar 

  45. Chen, H., Wertheimer, S.J., Lin, C.H., Katz, S.L., Amrein, K.E., Burn, P. and Quon, M.J. (1997) Protein-tyrosine phosphatases PTP1B and syp are modulators of insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. J Biol Chem 272, 8026–8031.

    Article  Google Scholar 

  46. Tonics, N.K., Cicirelli, M.F., Diltz, C.D., Krebs, E.G. and Fischer, E.H. (1990) Effect of microinjection of a low-Mr human placenta protein tyrosine phosphatase on induction of meiotic cell division in Xenopus oocytes. Mol Cell Biol 10, 458–463.

    Google Scholar 

  47. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C.C., Ramachandran, C., Gresser, M.J., Tremblay, M.L. and Kennedy, B.P. (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548.

    Article  Google Scholar 

  48. Milarski, K.L. and Sallie!, A.R. (1994) Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem 269, 21239–21243.

    Google Scholar 

  49. Maegawa, H., Hasegawa, M., Sugai, S., Obata, T., Ugi, S., Morino, K., Egawa, K., Fujita, T., Sakamoto, T., Nishio, Y., Kojima, H., Haneda, M., Yasuda, H., Kikkawa, R. and Kashiwagi, A. (1999) Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance. J Biol Chem 274, 30236–30243.

    Article  Google Scholar 

  50. Soni, P., Lakkis, M., Poy, M.N., Fernstrom, M.A. and Najjar, S.M. (2000) The differential effects of pp120 (Ceacam 1) on the mitogenic action of insulin and insulin-like growth factor 1 are regulated by the nonconserved tyrosine 1316 in the insulin receptor. Mol Cell Biol 20, 3896–3905.

    Article  Google Scholar 

  51. Najjar, S.M., Blakesley, V.A., Li Calzi, S., Kato, H., LeRoith, D. and Choice, C.V. (1997) Differential phosphorylation of pp120 by insulin and insulin-like growth factor-1 receptors: role for the C-terminal domain of the beta-subunit. Biochemistry 36, 68276834.

    Google Scholar 

  52. Formisano, P., Najjar, S.M., Gross, C.N., Philippe, N., Oriente, F., Kern-Buell, C.L., Accili, D. and Gorden, P. (1995) Receptor-mediated internalization of insulin. Potential role of pp120/HA4, a substrate of the insulin receptor kinase. J Biol Chem 270, 2407324077.

    Google Scholar 

  53. Blakesley, V.A., Kalebic, T., Heiman, L.J., Stannard, B., Faria, T.N., Roberts, C.T., Jr. and LeRoith, D. (1996) Tumorigenic and mitogenic capacities are reduced in transfected fibroblasts expressing mutant insulin-like growth factor (IGF)-I receptors. The role of tyrosine residues 1250, 1251, and 1316 in the carboxy-terminus of the IGF-I receptor. Endocrinology 137, 410–417.

    Google Scholar 

  54. Porcu, P., Ferber, A., Pietrzkowski, Z., Roberts, C.T., Adamo, M., LeRoith, D. and Baserga, R. (1992) The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulinlike growth factor 1 with its receptor. Mol Cell Biol 12, 50695077.

    Google Scholar 

  55. Urso, B., Cope, D.L., Kalloo-Hosein, H.E., Hayward, A.C., Whitehead, J.P., O’Rahilly, S. and Siddle, K. (1999) Differences in signaling properties of the cytoplasmic domains of the insulin receptor and insulin-like growth factor receptor in 3T3–L1 adipocytes. J Biol Chem 274, 30864–30873.

    Article  Google Scholar 

  56. Park, B.C., Kido, Y. and Accili, D. (1999) Differential signaling of insulin and IGF-1 receptors to glycogen synthesis in murine hepatocytes. Biochemistry 38, 7517–7523.

    Article  Google Scholar 

  57. Tartare, S., Mothe, I., Kowalski-Chauvel, A., Breittmayer, J.P., Ballotti, R. and Van Obberghen, E. (1994) Signal transduction by a chimeric insulin-like growth factor-1 (IGF-1) receptor having the carboxyl-terminal domain of the insulin receptor. J Biol Chem 269, 11449–11455.

    Google Scholar 

  58. Esposito, D.L., Blakesley, V.A., Koval, A.P., Scrimgeour, A.G. and LeRoith, D. (1997) Tyrosine residues in the C-terminal domain of the insulin-like growth factor-I receptor mediate mitogenic and tumorigenic signals. Epdocrinology 138, 2979–2988.

    Article  Google Scholar 

  59. Chow, J.C., Condorelli, G. and Smith, R.J. (1998) Insulin-like growth factor-I receptor internalization regulates signaling via the Shc/mitogen-activated protein kinase pathway, but not the insulin receptor substrate-1 pathway. J Biol Chem 273, 4672–4680.

    Article  Google Scholar 

  60. Ceresa, B.P., Kao, A.W., Santeler, S.R. and Pessin, J.E. (1998) Inhibition of clathrin- mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol Cell Biol 18, 3862–3870.

    Google Scholar 

  61. Emanuelli, B., Peraldi, P., Filloux, C., Sawka-Verhelle, D., Hilton, D. and Van Obberghen, E. (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275, 15985–15991.

    Article  Google Scholar 

  62. Zong, C.S., Chan, J., Levy, D.E., Horvath, C., Sadowski, H.B. and Wang, L.H. (2000) Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem 275, 15099–15105.

    Article  Google Scholar 

  63. Dey, B.R., Spence, S.L., Nissley, P. and Furlanetto, R.W. (1998) Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem 273, 24095–24101.

    Article  Google Scholar 

  64. Warren, R.S., Yuan, H., Matli, M.R., Ferrara, N. and Donner, D.B. (1996) Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem 271, 29483–29488.

    Article  Google Scholar 

  65. Zelzer, E., Levy, Y., Kahana, C., Shilo, B.Z., Rubinstein, M. and Cohen, B. (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIFlalpha/ARNT. Embo J 17, 5085–5094.

    Article  Google Scholar 

  66. Miele, C., Rochford, J.J., Filippa, N., Giorgetti-Peraldi, S. and Van Obberghen, E. (2000) Insulin and insulin-like growth factor-I induce vascular endothelial growth factor mRNA expression via different signaling pathways [In Process Citation]. J Biol Chem 275, 21695–21702.

    Article  Google Scholar 

  67. Wertheimer, E., Trebicz, M., Eldar, T., Gartsbein, M., Nofeh-Moses, S. and Tennenbaum, T. (2000) Differential roles of insulin receptor and insulin-like growth factor-1 receptor in differentiation of murine skin keratinocytes [In Process Citation]. J Invest Dermatol 115, 24–29.

    Article  Google Scholar 

  68. Okubo, Y., Blakesley, V.A., Stannard, B., Gutkind, S. and Le Roith, D. (1998) Insulin-like growth factor-I inhibits the stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem 273, 25961–25966.

    Article  Google Scholar 

  69. Fukunaga, K., Noguchi, T., Takeda, H., Matozaki, T., Hayashi, Y., Itoh, H. and Kasuga, M. (2000) Requirement for protein-tyrosine phosphatase SHP-2 in insulin-induced activation of c-Jun NH(2)-terminal kinase. J Biol Chem 275, 5208–5213.

    Article  PubMed  CAS  Google Scholar 

  70. Nakae, J., Barr, V. and Accili, D. (2000) Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR. Embo J 19, 989–996.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

LeRoith, D., Quon, M.J., Zick, Y. (2002). Insulin and Insulin-Like Growth Factor-1 Receptors and Signaling Pathways: Similarities and Differences. In: Goffin, V., Kelly, P.A. (eds) Hormone Signaling. Endocrine Updates, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3600-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3600-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4948-6

  • Online ISBN: 978-1-4757-3600-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics