Signal Transduction and Structure of Nuclear Receptors

  • William Bourguet
  • Pierre Germain
  • Hinrich Gronemeyer
Part of the Endocrine Updates book series (ENDO, volume 17)


Multicellular organisms require specific intercellular communication to properly organize the complex body plan during embryogenesis and maintain its properties and functions throughout life. While growth factors, neurotransmitters and peptide hormones bind to membrane receptors thereby inducing the activity of intracellular kinase cascades or the JAK-STAT/Smad signaling pathways, other small, hydrophobic signaling molecules such as steroid hormones, certain vitamins and metabolic intermediates enter, or are generated, within the target cells and bind to cognate members of a large family of nuclear receptors. Nuclear receptors (NRs) are of major importance for metazoan intercellular signaling, as they converge different intra- and extracellular signals to initiate and regulate gene expression programs. They act as transcription factors that i) respond directly through physical association with a large variety of hormonal and other regulatory, as well as metabolic signals, ii) integrate diverse signaling pathways as they correspond themselves to targets of post-translational modifications, and iii) regulate the activities of other signaling cascades (commonly referred to as “signal transduction crosstalk”). The genetic programs that they modulate affect virtually all aspects of the life of a multicellular organism, covering such diverse aspects as, for example, embryogenesis, homeostasis and reproduction, or cell growth and death. Their gene regulatory power and selectivity has prompted intense research on these key factors, which is now starting to decipher a complex network of molecular events accounting for their transcription regulatory capacity. The study of these molecular processes has also shed light on multiple general principles underlying transcription regulation, and it will be a future challenge to uncover the molecular rules that define selective NR-dependent spatial and temporal control of gene expression.


Androgen Receptor Glucocorticoid Receptor Nuclear Receptor Thyroid Hormone Receptor Coactivator Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gronemeyer H, Laudet V 1995 Transcription factors 3: nuclear receptors. Protein Profile 2: 1173–308PubMedGoogle Scholar
  2. 2.
    Giguere V 1999 Orphan nuclear receptors: from gene to function. Endocr Rev 20:689–725Google Scholar
  3. 3.
    Escriva H, Safi R, Hanni C, Langlois MC, Saumitou-Laprade P, Stehelin D, Capron A, Pierce R, Laudet V 1997 Ligand binding was acquired during evolution of nuclear receptors. Proc Natl Acad Sci U S A 94: 6803–8PubMedCrossRefGoogle Scholar
  4. 4.
    Escriva H, Safi R, Hanni C, Langlois MC, Saumitou-Laprade P, Stehelin D, Capron A, Pierce R, Laudet V 1999 A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–3Google Scholar
  5. 5.
    Shao D, Lazar MA 1999 Modulating nuclear receptor function: may the phos be with you. J Clin Invest 103: 1617–8PubMedCrossRefGoogle Scholar
  6. 6.
    Tremblay A, Tremblay GB, Labrie F, Giguere V 1999 Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol Cell 3: 513–9PubMedCrossRefGoogle Scholar
  7. 7.
    Bocquel MT, Kumar V, Stricker C, Chambon P, Gronemeyer H 1989 The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucleic Acids Res 17: 2581–95PubMedCrossRefGoogle Scholar
  8. 8.
    Berry M, Metzger D, Chambon P 1990 Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. Embo J 9: 2811–8PubMedGoogle Scholar
  9. 9.
    Sartorius CA, Melville MY, Hovland AR, Tung L, Takimoto GS, Horwitz KB 1994 A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol 8: 1347–60PubMedCrossRefGoogle Scholar
  10. 10.
    Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B 1999 The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 19: 6085–97PubMedGoogle Scholar
  11. 11.
    He B, Kemppainen JA, Voegel JJ, Gronemeyer H, Wilson EM 1999 Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 274: 37219–25PubMedCrossRefGoogle Scholar
  12. 12.
    Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG 1999 The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 19: 8383–92PubMedGoogle Scholar
  13. 13.
    Benecke A, Chambon P, Gronemeyer H 2000 Synergy between estrogen receptor a activation functions AF1 and AF2 mediated by transcription intermediary factor TIF2. Embo Reports 1: 151–7PubMedCrossRefGoogle Scholar
  14. 14.
    Glass CK 1994 Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 15: 391–407PubMedGoogle Scholar
  15. 15.
    Gronemeyer H, Moras D 1995 Nuclear receptors. How to finger DNA [news; comment]. Nature 375: 190–1PubMedCrossRefGoogle Scholar
  16. 16.
    Tyagi RK, Amazit L, Lescop P, Milgrom E, Guiochon-Mantel A 1998 Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol Endocrinol 12: 1684–95PubMedCrossRefGoogle Scholar
  17. 17.
    Baumann CT, Lim CS, Hager GL 1999 Intracellular localization and trafficking of steroid receptors. Cell Biochem Biophys 31: 119–27PubMedCrossRefGoogle Scholar
  18. 18.
    Tyagi RK, Lavrovsky Y, Ahn SC, Song CS, Chatterjee B, Roy AK 2000 Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol 14: 1162–74PubMedCrossRefGoogle Scholar
  19. 19.
    Bourguet W, Germain P, Gronemeyer H 2000 Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 21: 381–8PubMedCrossRefGoogle Scholar
  20. 20.
    Glass CK, Rosenfeld MG 2000 The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121–41PubMedGoogle Scholar
  21. 21.
    Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D 1995 Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375: 377–82PubMedCrossRefGoogle Scholar
  22. 22.
    Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D 1995 Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378: 681–9PubMedCrossRefGoogle Scholar
  23. 23.
    Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ 1995 A structural role for hormone in the thyroid hormone receptor. Nature 378: 690–7PubMedCrossRefGoogle Scholar
  24. 24.
    Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H 1996 A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 3: 206PubMedCrossRefGoogle Scholar
  25. 25.
    Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV 1998 Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395: 137–43PubMedCrossRefGoogle Scholar
  26. 26.
    Moras D, Gronemeyer H 1998 The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 10: 384–91PubMedCrossRefGoogle Scholar
  27. 27.
    Le Douarin B, Nielsen AL, Gamier JM, Ichinose H, Jeanmougin F, Losson R, Chambon P 1996 A possible involvement of TIF! alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. Embo J 15: 6701–15PubMedGoogle Scholar
  28. 28.
    Heery DM, Kalkhoven E, Hoare S, Parker MG 1997 A signature motif in transcriptional co-activators mediates binding to nuclear receptor. Nature 387: 733–736PubMedCrossRefGoogle Scholar
  29. 29.
    Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR 1998 Structure and specificity of nuclear receptorcoactivator interactions. Genes Dev 12: 3343–56PubMedCrossRefGoogle Scholar
  30. 30.
    Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL 1998 The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95: 927–37PubMedCrossRefGoogle Scholar
  31. 31.
    Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M 1997 Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389: 753–8PubMedCrossRefGoogle Scholar
  32. 32.
    Bourguet W, Vivat V, Wurtz JM, Chambon P, Gronemeyer H, Moras D 2000 Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell 5: 289–98PubMedCrossRefGoogle Scholar
  33. 33.
    Hu X, Lazar MA 1999 The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402: 93–6PubMedCrossRefGoogle Scholar
  34. 34.
    Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Krishna V, Chatterjee K, Evans RM, Schwabe JW 1999 Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13: 3209–16PubMedCrossRefGoogle Scholar
  35. 35.
    Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG 1999 Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 13: 3198–208PubMedCrossRefGoogle Scholar
  36. 36.
    Gampe RT, Jr., Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE 2000 Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5: 545–55PubMedCrossRefGoogle Scholar
  37. 37.
    Cheskis B, Freedman LP 1994 Ligand modulates the conversion of DNA-bound vitamin D3 receptor ( VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol Cell Biol 14: 3329–38PubMedGoogle Scholar
  38. 38.
    Collingwood TN, Butler A, Tone Y, Clifton-Bligh RJ, Parker MG, Chatterjee VK 1997 Thyroid hormone-mediated enhancement of heterodimer formation between thyroid hormone receptor beta and retinoid X receptor. J Biol Chem 272: 13060–5PubMedCrossRefGoogle Scholar
  39. 39.
    Peters GA, Khan SA 1999 Estrogen receptor domains E and F: role in dimerization and interaction with coactivator RIP-140. Mol Endocrinol 13: 286–96Google Scholar
  40. 40.
    Sladek FM, Ruse MD, Jr., Nepomuceno L, Huang SM, Stallcup MR 1999 Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alphal. Mol Cell Biol 19: 6509–22PubMedGoogle Scholar
  41. 41.
    Montano MM, Muller V, Trobaugh A, Katzenellenbogen BS 1995 The carboxyterminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol Endocrinol 9: 814–25PubMedCrossRefGoogle Scholar
  42. 42.
    Nichols M, Rientjes JM, Stewart AF 1998 Different positioning of the ligand-binding domain helix 12 and the F domain of the estrogen receptor accounts for functional differences between agonists and antagonists. Embo J 17: 765–73PubMedCrossRefGoogle Scholar
  43. 43.
    Chen JD 2000 Steroid/nuclear receptor coactivators. Vitam Horm 58: 391–448PubMedCrossRefGoogle Scholar
  44. 44.
    Meyer ME, Gronemeyer H, Turcotte B, Bocquel MT, Tasset D, Chambon P 1989 Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57: 433–42PubMedCrossRefGoogle Scholar
  45. 45.
    Tasset D, Tora L, Fromental C, Scheer E, Chambon P 1990 Distinct classes of transcriptional activating domains function by different mechanisms. Cell 62: 1177–87PubMedCrossRefGoogle Scholar
  46. 46.
    Collingwood TN, Urnov FD, Wolffe AP 1999 Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J Mol Endocrinol 23: 255–75PubMedCrossRefGoogle Scholar
  47. 47.
    McKenna NJ, Lanz RB, O’Malley BW 1999 Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20: 321–44PubMedCrossRefGoogle Scholar
  48. 48.
    Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG 1997 The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387: 677–84PubMedCrossRefGoogle Scholar
  49. 49.
    Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ, Stallcup MR 1998 Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIPI) and steroid receptor coactivator 1 (SRC- 1): multiple motifs with different binding specificities. Mol Endocrinol 12: 302–13PubMedCrossRefGoogle Scholar
  50. 50.
    McInerney EM, Rose DW, Flynn SE, Westin S, Mullen TM, Krones A, Inostroza J, Torchia J, Nolte RT, Assa-Munt N, Milburn MV, Glass CK, Rosenfeld MG 1998 Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev 12: 3357–68PubMedCrossRefGoogle Scholar
  51. 51.
    Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O’Malley BW 2000 The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 97: 6379–84PubMedCrossRefGoogle Scholar
  52. 52.
    Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O’Malley BW 1998 Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279: 1922–5PubMedCrossRefGoogle Scholar
  53. 53.
    Chen D, Huang SM, Stallcup MR 2000 Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARMI and p300. J Biol Chem 275: 40810–6PubMedCrossRefGoogle Scholar
  54. 54.
    Huang SM, Stallcup MR 2000 Mouse Zacl, a transcriptional coactivator and repressor for nuclear receptors. Mol Cell Biol 20: 1855–67PubMedCrossRefGoogle Scholar
  55. 55.
    Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M 2000 Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103: 843–52PubMedCrossRefGoogle Scholar
  56. 56.
    Berrevoets CA, Doesburg P, Steketee K, Trapman J, Brinkmann AO 1998 Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol Endocrinol 12: 1172–83PubMedCrossRefGoogle Scholar
  57. 57.
    Ma H, Hong H, Huang SM, Irvine RA, Webb P, Kushner PJ, Coetzee GA, Stallcup MR 1999 Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol Cell Biol 19: 6164–73PubMedGoogle Scholar
  58. 58.
    McInerney EM, Tsai MJ, O’Malley BW, Katzenellenbogen BS 1996 Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator. Proc Natl Acad Sci U S A 93: 10069–73PubMedCrossRefGoogle Scholar
  59. 59.
    Tetel MJ, Giangrande PH, Leonhardt SA, McDonnell DP, Edwards DP 1999 Hormone-dependent interaction between the amino-and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol Endocrinol 13: 910–24PubMedCrossRefGoogle Scholar
  60. 60.
    He B, Kemppainen JA, Wilson EM 2000 FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275: 22986–94PubMedCrossRefGoogle Scholar
  61. 61.
    Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM 1999 Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98: 675–86PubMedCrossRefGoogle Scholar
  62. 62.
    Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolfe AP, Ge H 1997 Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7: 689–92PubMedCrossRefGoogle Scholar
  63. 63.
    Fondell JD, Ge H, Roeder RG 1996 Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Nati Acad Sci USA 93: 8329–8333CrossRefGoogle Scholar
  64. 64.
    Rachez C, Suldan Z, Ward J, Chang CP, Burakov D, Erdjument-Bromage H, Tempst P, Freedman LP 1998 A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev 12: 1787–800PubMedCrossRefGoogle Scholar
  65. 65.
    Gu W, Malik S, Ito M, Yuan CX, Fondell JD, Zhang X, Martinez E, Qin J, Roeder RG 1999 A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulationi. Mol Cell 3: 97–108Google Scholar
  66. 66.
    Freedman LP 1999 Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97: 5–8PubMedCrossRefGoogle Scholar
  67. 67.
    Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG 1999 Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell 3: 361–70PubMedCrossRefGoogle Scholar
  68. 68.
    Fondell JD, Guermah M, Malik S, Roeder RG 1999 Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. Proc Natl Acad Sci U S A 96: 1959–64PubMedCrossRefGoogle Scholar
  69. 69.
    Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, ErdjumentBromage H, Tempst P, Freedman LP 1999 Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398: 824–8PubMedCrossRefGoogle Scholar
  70. 70.
    Yang W, Freedman LP 1999 20-Epi analogues of 1,25-dihydroxyvitamin D3 are highly potent inducers of DRIP coactivator complex binding to the vitamin D3 receptor. J Biol Chem 274: 16838–45Google Scholar
  71. 71.
    Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG 1998 The TRAP220 component of a thyroid hormone receptor-associated protein ( TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci U S A 95: 7939–44PubMedCrossRefGoogle Scholar
  72. 72.
    Hittelman AB, Burakov D, Iniguez-Lluhi JA, Freedman LP, Garabedian MJ 1999 Differential regulation of glucocorticoid receptor transcriptional activation via AF-1associated proteins. Embo J 18: 5380–8PubMedCrossRefGoogle Scholar
  73. 73.
    Sharma D, Fondell JD 2000 Temporal formation of distinct thyroid hormone receptor coactivator complexes in HeLa cells. Mol Endocrinol 14: 2001–9PubMedCrossRefGoogle Scholar
  74. 74.
    Baniahmad A, Tsai SY, O’Malley BW, Tsai MJ 1992 Kindred S thyroid hormone receptor is an active and constitutive silencer and a repressor for thyroid hormone and retinoic acid responses. Proc Natl Acad Sci U S A 89: 10633–7PubMedCrossRefGoogle Scholar
  75. 75.
    Chen JD, Evans RM 1995 A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–7PubMedCrossRefGoogle Scholar
  76. 76.
    Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, et al. 1995 Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404PubMedCrossRefGoogle Scholar
  77. 77.
    Chen JY, Clifford J, Zusi C, Starrett J, Tortolani D, Ostrowski J, Reczek PR, Chambon P, Gronemeyer H 1996 Two distinct actions of retinoid-receptor ligands. Nature 382: 819–22PubMedCrossRefGoogle Scholar
  78. 78.
    Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM 1995 15Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83: 803–12Google Scholar
  79. 79.
    Perlmann T, Jansson L 1995 A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev 9: 769–82PubMedCrossRefGoogle Scholar
  80. 80.
    Mukherjee R, Davies PJ, Crombie DL, Bischoff ED, Cesario RM, Jow L, Hamann LG, Boehm MF, Mondon CE, Nadzan AM, Paterniti JR, Jr., Heyman RA 1997 Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386: 407–10PubMedCrossRefGoogle Scholar
  81. 81.
    Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, Herrlich P 1990 Antitumor promotion and antiinflammation: down-modulation of AP-1 ( Fos/Jun) activity by glucocorticoid hormone. Cell 62: 1189–204PubMedCrossRefGoogle Scholar
  82. 82.
    Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin M 1990 Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62: 1205–15PubMedCrossRefGoogle Scholar
  83. 83.
    Schule R, Umesono K, Mangelsdorf DJ, Bolado J, Pike JW, Evans RM 1990 Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell 61: 497–504PubMedCrossRefGoogle Scholar
  84. 84.
    Gottlicher M, Heck S, Herrlich P 1998 Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med 76: 480–9PubMedCrossRefGoogle Scholar
  85. 85.
    Resche-Rigon M, Gronemeyer H 1998 Therapeutic potential of selective modulators of nuclear receptor action. Curr Opin Chem Biol 2: 501–7PubMedCrossRefGoogle Scholar
  86. 86.
    Shemshedini L, Knauthe R, Sassone-Corsi P, Pornon A,.Gronemeyer H 1991 Cell-specific inhibitory and stimulatory effects of Fos and Jun on transcription activation by nuclear receptors. Embo J 10: 3839–49Google Scholar
  87. 87.
    Bubulya A, Wise SC, Shen XQ, Burmeister LA, Shemshedini L 1996 c-Jun can mediate androgen receptor-induced transactivation. J Biol Chem 271: 24583–24589Google Scholar
  88. 88.
    Pearce D, Matsui W, Miner JN, Yamamoto KR 1998 Glucocorticoid receptor transcriptional activity determined by spacing of receptor and nonreceptor DNA sites. J Biol Chem 273: 30081–5PubMedCrossRefGoogle Scholar
  89. 89.
    Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M 1995 Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270: 286–90PubMedCrossRefGoogle Scholar
  90. 90.
    Heck S, Bender K, Kullmann M, Gottlicher M, Herrlich P, Cato AC 1997 I kappaB alpha-independent downregulation of NF-kappaB activity by glucocorticoid receptor. Embo J 16: 4698–707PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • William Bourguet
    • 1
  • Pierre Germain
    • 1
  • Hinrich Gronemeyer
    • 1
  1. 1.Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Illkirch Cedex, C. U. de StrasbourgFrance

Personalised recommendations