Protein Phosphorylation and Protein-Protein Interactions

  • Vincent Goffin
  • Paul A. Kelly
Part of the Endocrine Updates book series (ENDO, volume 17)


Intracellular signaling is the series of events which translates the specific message of circulating ligands into a particular biological response in target cells. The first step in hormone signaling involves the interaction between a ligand and its cognate receptor (membrane or nuclear), which in turn induces stoichiometric and conformational changes on the ligand-receptor complex. In the current state of the art, these modifications appear to be the molecular basis of signal triggering. Whatever the number or the type of proteins involved in signal transduction process within the cell, all known cascades involve one or, in most cases, two basic mechanisms: protein-protein interactions and protein phosphorylation.


Protein Phosphorylation Hormone Signaling Protein Module Pleckstrin Homology Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosshard HR 2001 Molecular recognition by induced fit: how fit is the concept? News Physiol Sci 16: 171–173PubMedGoogle Scholar
  2. 2.
    Schultz J, Copley RR, Doerks T, Ponting CP, Bork P 2000 SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28: 231–234PubMedCrossRefGoogle Scholar
  3. 3.
    Sadowski I, Stone JC, Pawson T 1986 A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol Cell Biol 6: 4396–4408PubMedGoogle Scholar
  4. 4.
    Koch CA, Anderson D, Moran MF, Ellis C, Pawson T 1991 SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252: 668–674PubMedCrossRefGoogle Scholar
  5. 5.
    Pawson T 1995 Protein modules and signalling networks. Nature 373: 573–580PubMedCrossRefGoogle Scholar
  6. 6.
    Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley LC 1993 SH2 domains recognize specific phosphopeptides sequences. Cell 72: 767–778PubMedCrossRefGoogle Scholar
  7. 7.
    Sudol M 1998 From Src Homology domains to other signaling modules: proposal of the ‘protein recognition code’. Oncogene 17: 1469–1474PubMedCrossRefGoogle Scholar
  8. 8.
    Kavanaugh WM, Williams LT 1994 An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266: 1862–1865PubMedCrossRefGoogle Scholar
  9. 9.
    Forman-Kay JD, Pawson T 1999 Diversity in protein recognition by PTB domains. Curr Opin Struct Biol 9: 690–695PubMedCrossRefGoogle Scholar
  10. 10.
    Tatosyan AG, Mizenina OA 2000 Kinases of the Src family: structure and functions. Biochemistry (Mosc) 65: 49–58Google Scholar
  11. 11.
    Cicchetti P, Mayer BJ, Thiel G, Baltimore D 1992 Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257: 803–806PubMedCrossRefGoogle Scholar
  12. 12.
    Feng S, Chen JK, Yu H, Simon JA, Schreiber SL 1994 Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266: 1241–1247PubMedCrossRefGoogle Scholar
  13. 13.
    Sparks AB, Hoffman NG, McConnell SJ, Fowlkes DM, Kay BK 1996 Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins. Nat Biotechnol 14: 741–744PubMedCrossRefGoogle Scholar
  14. 14.
    Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quillam LA, Kay BK 1996 Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc Natl Acad Sci (USA) 93: 1540–1544CrossRefGoogle Scholar
  15. 15.
    Koyasu S, Tse AG, Moingeon P, Hussey RE, Mildonian A, Hannisian J, Clayton LK, Reinherz EL 1994 Delineation of a T-cell activation motif required for binding of protein tyrosine kinases containing tandem SH2 domains. Proc Natl Acad Sci (USA) 91: 6693–6697CrossRefGoogle Scholar
  16. 16.
    Pawson T, Schlessinger J. 1993 SH2 and SH3 domains. Curr.Biol. 3: 434 442.Google Scholar
  17. 17.
    Sudol M, Chen HI, Bougeret C, Einbond A, Bork P 1995 Characterization of a novel protein-binding module-the WW domain. FEBS Lett 369: 67–71PubMedCrossRefGoogle Scholar
  18. 18.
    Sudol M 1996 The WW module competes with the SH3 domains? Trends Biochem Sci 21: 161–163PubMedGoogle Scholar
  19. 19.
    Macias MJ, Hyvonen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat H 1996 Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382: 646–649PubMedCrossRefGoogle Scholar
  20. 20.
    Aghazadeh B, Rosen MK 1999 Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Chem Biol 6: R241 - R246PubMedCrossRefGoogle Scholar
  21. 21.
    Haslam RJ, Koide HB, Hemmings BA 1993 Pleckstrin domain homology. Nature 363: 309–310PubMedCrossRefGoogle Scholar
  22. 22.
    Lemmon MA, Ferguson KM, Schlessinger J 1996 PH domains: diverse sequences with a common fold recruit signaling molecules to cell surface. Cell 85: 621–624PubMedCrossRefGoogle Scholar
  23. 23.
    Lemmon MA, Ferguson KM 2000 Signal-dependent membrane targeting by pleckstrin homology ( PH) domains. Biochem J 350: 1–18Google Scholar
  24. 24.
    Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LS, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones SJ, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C, O’Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng XH, Lewis S 2000 Comparative genomics of the eukaryotes. Science 287: 2204–2215PubMedCrossRefGoogle Scholar
  25. 25.
    Broutin I, Ducruix A. 2000 Domaines structuraux et signalisation. Médecine/Sciences 16: 611–616.Google Scholar
  26. 26.
    Pawson T, Nash P 2000 Protein-protein interactions define specificity in signal transduction. Genes Dev 14: 1027–1047PubMedGoogle Scholar
  27. 27.
    Hunter T 2000 Signaling-2000 and beyond. Cell 100: 113–127PubMedCrossRefGoogle Scholar
  28. 28.
    Schlessinger J 2000 Cell signaling by receptor tyrosine kinases. Cell 103: 211–225PubMedCrossRefGoogle Scholar
  29. 29.
    Hunter T 1980 Protein phosphorylated by the RSV transforming function. Cell 22: 647–648PubMedCrossRefGoogle Scholar
  30. 30.
    Sefton BM, Hunter T, Beemon K, Eckhart W 1980 Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 20: 807–816PubMedCrossRefGoogle Scholar
  31. 31.
    Taniguchi T 1995 Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268: 251–255PubMedCrossRefGoogle Scholar
  32. 32.
    McCubrey JA, May WS, Duronio V, Mufson A 2000 Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 14: 9–21PubMedCrossRefGoogle Scholar
  33. 33.
    Abram CL, Courtneidge SA 2000 Src family tyrosine kinases and growth factor signaling. Exp Cell Res 254: 1–13PubMedCrossRefGoogle Scholar
  34. 34.
    Superti-Furga G, Courtneidge SA 1995 Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays 17: 321–330PubMedCrossRefGoogle Scholar
  35. 35.
    Courtneidge SA, Fumagalli S, Koegl M, Superti-Furga G, Twamley-Stein GM 1993 The Src family of protein tyrosine kinases: regulation and functions. Dev Supp157–64Google Scholar
  36. 36.
    Resh MD 1994 Myristylation and palmitylation of Src family members: the fats of the matter. Cell 76: 411–413PubMedCrossRefGoogle Scholar
  37. 37.
    Milligan G, Parenti M, Magee AI 1995 The dynamic role of palmitoylation in signal transduction. Trends Biochem Sci 20: 181–187PubMedCrossRefGoogle Scholar
  38. 38.
    Takeya T, Hanafusa H 1983 Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating the transforming virus. Cell 32: 881–890PubMedCrossRefGoogle Scholar
  39. 39.
    Superti-Furga G, Fumagalli S, Koegl M, Courtneidge SA, Draetta G 1993 Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src. EMBO J 12: 2625–2634PubMedGoogle Scholar
  40. 40.
    Xu W, Harrison SC, Eck MJ 1997 Three-dimensional structure of the tyrosine kinase c-Src. Nature 385: 595–602PubMedCrossRefGoogle Scholar
  41. 41.
    Sicheri F, Moarefi I, Kuriyan J 1997 Crystal structure of the Src family tyrosine kinase Hck]. Nature 385: 602–609PubMedCrossRefGoogle Scholar
  42. 42.
    Williams JC, Wierenga RK, Saraste M 1998 Insights into Src kinase functions: structural comparisons. Trends Biochem Sci 23: 179–184PubMedCrossRefGoogle Scholar
  43. 43.
    Hubbard SR, Till JH 2000 Protein tyrosine kinase structure and function. Annu Rev Biochem 69: 373–398PubMedCrossRefGoogle Scholar
  44. 44.
    Hubbard SR 1999 Src autoinhibition: let us count the ways. Nat Struct Biol 6: 711–714PubMedCrossRefGoogle Scholar
  45. 45.
    Gonfloni S, Weijland A, Kretzschmar J, Superti-Furga G 2000 Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nat Struct Biol 7: 281–286PubMedCrossRefGoogle Scholar
  46. 46.
    Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT 1997 Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385: 650–653PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Vincent Goffin
    • 1
  • Paul A. Kelly
    • 1
  1. 1.Inserm Unit 344, Molecular EndocrinologyFaculty of Medicine NeckerParis Cedex 15France

Personalised recommendations