Crosstalk Mitigation Techniques

  • Idelfonso Tafur Monroy
  • Eduward Tangdiongga
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 678)


In this chapter we describe a crosstalk mitigation or reduction technique. Crosstalk mitigation is obtained by introducing phase dithering or scrambling in optical signals. An experimental test-bed is used to verify the performance of this technique. An increased tolerance of 7 and 5 dB towards optical crosstalk is achieved in a 2.5-Gbit/s link of 100 and 200 km of standard single mode fiber, respectively.


Phase Noise Noise Source Modulation Index Fiber Dispersion Power Penalty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Dragone, “An N × N Optical Multiplexer using a Planar Arrangement of Two Star Couplers,” IEEE Photon. TechnoL Lett., vol. 3, pp. 812–815, Sept. 1991.CrossRefGoogle Scholar
  2. [2]
    M. K. Smit, “Tutorial: Advanced Devices for WDM Applications,” in Proc. 26th European Conf. on Optical Comm. (ECOC2000), vol. 3, pp. 19–20, Munich-Germany, Sept. 2000.Google Scholar
  3. [3]
    S. Okamoto, M. Koga, H. Suzuki, and K. Kawai, “Robust Photonic Transport Network Implementation with Optical Cross-Connect Systems,” IEEE Comm. Magazine, vol. 38, pp. 94–103, Mar. 2000.CrossRefGoogle Scholar
  4. [4]
    J. M. H. Elmirghani and H. T. Mouftah, “Technologies and Architecture for Scalable Dynamic Dense WDM Networks,” IEEE Comm. Magazine, vol. 38, pp. 58–66, Feb. 2000.CrossRefGoogle Scholar
  5. [5]
    C. G. P. Herben, D. H. P. Maat, X. J. M. Leijtens, M. R. Leys, Y. S. Oei, and M. K. Smit, “Polarization Independent Dilated WDM Cross-Connect on InP,” IEEE Photon. Technol. Lett., vol. 11, pp. 1599–1601, Dec. 1999.CrossRefGoogle Scholar
  6. [6]
    P. K. Pepeljugoski and K. Y. Lau, “Interferometric Noise Reduction in Fiber-Optic Links by Superposition of High Frequency Modulation,” IEEE/OSA J. Lightwave Technol, vol. 10, pp. 957–963, July 1992.CrossRefGoogle Scholar
  7. [7]
    J. Sharony, K. W. Cheung, and T. E. Stern, “Wavelength Dilated Switches — A New Class of High Density, Suppresses Crosstalk, Dynamic Wavelength-Routing Cross-Connects,” IEEE Photon. Technol. Lett., vol. 4, pp. 933–935, Aug. 1992.CrossRefGoogle Scholar
  8. [8]
    Y. Yamada, Y. Shibata, T. Okugawa, and K. Habara, “Tolerance for Optical Coherent Crosstalk of a Novel Manchester-Code Receiver,” in Proc. 24th European Conf. on Optical Comm. (ECOC’98), vol. 1, pp. 61–62, Madrid-Spain, Sept. 1998.Google Scholar
  9. [9]
    R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Willner, “Reduction of Coherent Crosstalk in WDM Add/Drop Multiplexing Nodes by Bit Pattern Misalignment,” IEEE Photon. Technol. Lett., vol. 11, pp. 134–136, Jan. 1999.CrossRefGoogle Scholar
  10. [10]
    F. Heismann, D. A. Gray, B. H. Lee, and R. W. Smith, “Electrooptic Polarization Scram¬blers for Optically Amplified Long-Haul Transmission Systems,” IEEE Photon. Technol. Lett., vol. 6, pp. 1156–1158, Sept. 1994.CrossRefGoogle Scholar
  11. [11]
    W. D. Cornwell, I. Andonovic, A. Zadok, and M. Tur, “The Role of Thermal Chirp in Reducing Interferometric Noise in Fiber-Optic Systems Driven by Directly Modulated DFB Lasers,” IEEE/OSA J. Lightwave Technol, vol. 18, pp. 154–160, Feb. 2000.CrossRefGoogle Scholar
  12. [12]
    P. J. Legg, M. Tur, H. Regev, W. D. Cornwell, M. Shabeer, and I. Andonovic, “Interfer¬ometric Noise Reduction Through Intrabit Frequency Evolution of Directly Modulated DFB Lasers,” IEEE/OSA J. Lightwave Technol, vol. 14, pp. 2117–2125, Oct. 1996.CrossRefGoogle Scholar
  13. [13]
    H. K. Kim and S. Chandrasekhar, “Dependence of In-Band Crosstalk Penalty on the Signal Quality in Optical Network Systems,” IEEE Photon. Technol. Lett., vol. 12, pp. 1273–1274, Sept. 2000.CrossRefGoogle Scholar
  14. [14]
    J. L. Gimlett and N. K. Cheung, “Effects of Phase-to-intensity Noise Conversion by Mul¬tiple Reflections on Gigabit-per-Second DFB Laser Transmission Systems,” IEEE/OSA J. Lightwave Technol, vol. 7, pp. 888–895, June 1989.CrossRefGoogle Scholar
  15. [15]
    M. W. Fleming and A. Mooradian, “Fundamental Line Broadening of Single-Mode (GaAl)As Diode Lasers,” Appl. Phys. Lett., vol. 38, p. 511, 1981.CrossRefGoogle Scholar
  16. [16]
    I. S. Gradshteyn, I. M. Ryzhik, and A. Jeffrey, Table of Integrals, Series, and Products. London-UK: Academic Press, 5 ed., 1994. ISBN 0–12–294755-X.zbMATHGoogle Scholar
  17. [17]
    K. Petermann, Laser Diode Modulation and Noise. Dordrecht-The Netherlands: Kluwer-Academic, 1988. ISBN 90–277–2672–8.CrossRefGoogle Scholar
  18. [18]
    S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of Laser Phase Noise to Intensity Noise Conversion by Chromatic Dispersion in Intensity Modulation and Direct Detection Optical-Fiber Transmission,” IEEE/OSA J. Lightwave TechnoL, vol. 8, pp. 1716–1722, Nov. 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Idelfonso Tafur Monroy
    • 1
  • Eduward Tangdiongga
    • 1
  1. 1.COBRA InstituteEindhoven University of TechnologyThe Netherlands

Personalised recommendations