Ovarian Cancer pp 331-351 | Cite as

Ovarian Cancer- Associated Proteinases

  • Supurna Ghosh
  • Yi Wu
  • M. Sharon Stack
Part of the Cancer Treatment and Research book series (CTAR, volume 107)


Ovarian carcinoma is the leading cause of death from gynecologic malignancies and the fourth most common cause of cancer related deaths among North American women. Approximately one out of every 70 women is estimated to develop ovarian cancer and one in 100 will die from the disease. A major cause of the high mortality of ovarian cancer is the lack of proper diagnostic tools for early detection when the tumor is still confined to the ovaries (FIGO stage I). Approximately 75% of patients are diagnosed with pre-existing disseminated intra-abdominal metastases (FIGO stage III or IV). Although the 5-year survival rate for cancer localized to the ovary can be as high as 90%, women with distant metastases have a less than 20% survival rate (Hoskins, 1995). Thus, a more detailed understanding of the factors that control ovarian cancer invasion and metastasis may have a significant impact on patient survival.


Ovarian Cancer Ovarian Carcinoma Ovarian Cancer Cell Ovarian Tumor Ovarian Cancer Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afzal, S., Lalani el, N., Foulkes, W. D., Boyce, B., Tickle, S., Cardillo, M. R., Baker, T., Pignatelli, M., and Stamp, G. W. Matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression and synthetic matrix metalloproteinase-2 inhibitor binding in ovarian carcinomas and tumor cell lines. Lab Invest 1996; 74: 406–21.PubMedGoogle Scholar
  2. Afzal, S., Lalani, E. N., Poulsom, R., Stubbs, A., Rowlinson, G., Sato, H., Seiki, M., and Stamp, G. W. MT1-MMP and MMP-2 mRNA expression in human ovarian tumors: possible implications for the role of desmoplastic fibroblasts. Hum Pathol 1998; 29: 155–65.CrossRefPubMedGoogle Scholar
  3. Andreasen, P. A., Kjoller, L., Christensen, L., and Duffy, M. J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1–22.CrossRefPubMedGoogle Scholar
  4. Astedt, B., Svanberg, L., and Nilsson, I. M. Fibrin degradation products and ovarian tumours. Br Med J 1971; 4: 458–9.CrossRefPubMedGoogle Scholar
  5. Band, V., Karlan, B. Y., Zurawski, V. R., Jr., and Littlefield, B. A. Simultaneous stimulation of urokinase and tissue-type plasminogen activators by phorbol esters in human ovarian carcinoma cells. J Cell Physiol 1989; 138: 106–14.CrossRefPubMedGoogle Scholar
  6. Bartlett, J. M., Langdon, S. P., Simpson, B. J., Stewart, M., Katsaros, D., Sismondi, P., Love, S., Scott, W. N., Williams, A. R., Lessells, A. M., et al. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996; 73: 301–6.CrossRefPubMedGoogle Scholar
  7. Beattie, G. J., and Smyth, J. F. Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites. Clin Cancer Res 1998; 4: 1899–902.PubMedGoogle Scholar
  8. Casslen, B., Gustaysson, B., and Astedt, B. Cell membrane receptors for urokinase plasminogen activator are increased in malignant ovarian tumours. Eur J Cancer 1991; 27: 1445–8.CrossRefPubMedGoogle Scholar
  9. Chambers, S. K., Wang, Y., Gertz, R. E., and Kacinski, B. M. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res 1995; 55: 1578–85.PubMedGoogle Scholar
  10. Conese, M., and Blasi, F. Urokinase/urokinase receptor system: internalization/degradation of urokinase-serpin complexes: mechanism and regulation. Biol Chem Hoppe Seyler 1995; 376, 143–55.PubMedGoogle Scholar
  11. Crickard, K., Niedbala, M. J., Crickard, U., Yoonessi, M., Sandberg, A. A., Okuyama, K., Bernacki, R. J., and Satchidanand, S. K. Characterization of human ovarian and endometrial carcinoma cell lines established on extracellular matrix. Gynecol Oncol 1989; 32: 163–73.CrossRefPubMedGoogle Scholar
  12. Davies, B., Brown, P. D., East, N., Crimmin, M. J., and Balkwill, F. R. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 1993; 53 (15): 2087–91.PubMedGoogle Scholar
  13. De Nictolis, M., Garbisa, S., Lucarini, G., Goteri, G., Masiero, L., Ciavattini, A., Garzetti, G. G., Stetler-Stevenson, W. G., Fabris, G., Biagini, G., and Prat, J. 72-kilodalton type IV collagenase, type IV collagen, and Ki 67 antigen in serous tumors or the ovary: a clinicopathologic, immunohistochemical, and Serological study. Int J Gynecol Pathol 1996; 15: 102–9.Google Scholar
  14. Dolo, V., D’Ascenzo, S., Violini, S., Pompucci, L., Festuccia, C., Ginestra, A., Vittorelli, M. L., Canevari, S., and Pavan, A. Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis 1999; 17: 131–40.CrossRefPubMedGoogle Scholar
  15. d’Ortho, M. P., Will, H., Atkinson, S., Butler, G., Messent, A., Gavrilovic, J., Smith, B., Timpl, R., Zardi, L., and Murphy, G. Membrane-type matrix metalloproteinases I and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem 1997; 250: 751–7.CrossRefPubMedGoogle Scholar
  16. Dumler, I., Petri, T., and Schleuning, W. D. Induction of c-fos gene expression by urokinase-type plasminogen activator in human ovarian cancer cells. FEBS Lett 1994; 343: 103–6.CrossRefPubMedGoogle Scholar
  17. Ellerbroek, S.M., Halbleib, J.M., Benavidez, M., Warmka, J.K., Wattenberg, E.V., Stack, M.S., and Hudson, L.G. Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Research 2001; in press.Google Scholar
  18. Ellerbroek, S. M., Fishman, D. A., Kearns, A. S., Bafetti, L. M., and Stack, M. S. Ovarian carcinoma regulation of matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase through betal integrin. Cancer Res 1999; 59: 1635–41.PubMedGoogle Scholar
  19. Ellerbroek, S. M., Hudson, L. G., and Stack, M. S. Proteinase requirements of epidermal growth factor-induced ovarian cancer cell invasion. Int J Cancer 1998; 78: 331–7.CrossRefPubMedGoogle Scholar
  20. Fang, X., Gaudette, D., Fumi, T., Mao, M., Estrella, V., Eder, A., Pustilnik, T., Sasagawa, T., Lapushin, R., Yu, S., et al. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann N Y Acad Sci 2000; 905: 188–208.CrossRefPubMedGoogle Scholar
  21. Fischer, K., Lutz, V., Wilhelm, O., Schmitt, M., Graeff, H., Heiss, P., Nishiguchi, T., Harbeck, N., Kessler, H., Luther, T., et al. Urokinase induces proliferation of human ovarian cancer cells: characterization of structural elements required for growth factor function. FEBS Lett 1998; 438: 101–5.CrossRefPubMedGoogle Scholar
  22. Fishman, D. A., Bafetti, L. M., and Stack, M. S. Membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation in primary human ovarian epithelial carcinoma cells. Invasion Metastasis 1996; 16: 150–9.PubMedGoogle Scholar
  23. Fishman, D. A., Bafetti, L. M., Banionis, S., Kearns, A. S., Chilukuri, K., and Stack, M. S. Production of extracellular matrix-degrading proteinases by primary cultures of human epithelial ovarian carcinoma cells. Cancer 1997; 80: 1457–63.CrossRefPubMedGoogle Scholar
  24. Fishman, D. A., Kearns, A., Chilukuri, K., Bafetti, L. M., O’Toole, E. A., Georgacopoulos, J., Ravosa, M. J., and Stack, M. S. Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2betal-integrin-mediated interaction with type I collagen. Invasion Metastasis 1998; 18: 15–26.CrossRefPubMedGoogle Scholar
  25. Fishman, D. A., Kearns, A., Larsh, S., Enghild, J. J., and Stack, M. S. Autocrine regulation of growth stimulation in human epithelial ovarian carcinoma by serine-proteinase-catalysed release of the urinary-type-plasminogen-activator N-terminal fragment. Biochem J 1999; 341: 765–9.CrossRefPubMedGoogle Scholar
  26. Fishman, D.A., Liu, Y., Ellerbroek, S.M. and Stack, M.S. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Research 2001; in press.Google Scholar
  27. Furui, T., LaPushin, R., Mao, M., Khan, H., Watt, S. R., Watt, M. A., Lu, Y., Fang, X., Tsutsui, S., Siddik, Z. H., et al. Overexpression of edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid-independent manner. Clin Cancer Res 1999; 5: 4308–18.PubMedGoogle Scholar
  28. Garzetti, G. G., Ciavattini, A., Lucarini, G., Goteri, G., de e Nictolis, M., Garbisa, S., Masiero, L., Romanini, C., and Graziella, B. Tissue and serum metalloproteinase (MMP-2) expression in advanced ovarian serous cystoadenocarcinomas: clinical and prognostic implications. Anticancer Res 1995; 15: 2799–804.PubMedGoogle Scholar
  29. Garzetti, G. G., Ciavattini, A., Lucarini, G., Goteri, G., Romanini, C., and Biagini, G. Increased serum 72 KDa metalloproteinase in serous ovarian tumors: comparison with CA 125. Anticancer Res 1996; 16: 2123–7.PubMedGoogle Scholar
  30. Garzetti, G. G., Ciavattini, A., Lucarini, G., Pugnaloni, A., De Nictolis, M., Amati, S., Romanini, C., and Biagini, G. Expression of vascular endothelial growth factor related to 72- kilodalton metalloproteinase immunostaining in patients with serous ovarian tumors. Cancer 1999; 85: 2219–25.CrossRefPubMedGoogle Scholar
  31. Ginestra, A., Miceli, D., Dolo, V., Romano, F. M., and Vittorelli, M. L. Membrane vesicles in ovarian cancer fluids: a new potential marker. Anticancer Res 1999; 19: 3439–45.PubMedGoogle Scholar
  32. Hafter, R., Klaubert, W., Gollwitzer, R., von Hugo, R., and Graeff, H. Crosslinked fibrin derivatives and fibronectin in ascitic fluid from patients with ovarian cancer compared to ascitic fluid in liver cirrhosis. Thromb Res 1984; 35: 53–64.CrossRefPubMedGoogle Scholar
  33. Harvey, W., and Amlot, P. L. Collagen production by human mesothelial cells in vitro, J Pathol 1983; 139: 337–47.CrossRefPubMedGoogle Scholar
  34. Hirahara, F., Miyagi, Y., Miyagi, E., Yasumitsu, H., Koshikawa, N., Nagashima, Y., Kitamura, H., Minaguchi, H., Umeda, M., and Miyazaki, K. Trypsinogen expression in human ovarian carcinomas. Int J Cancer 1995; 63: 176–81.CrossRefPubMedGoogle Scholar
  35. Holst-Hansen, C., Hamers, M. J., Johannessen, B. E., Brunner, N., and Stephens, R. W. Soluble urokinase receptor released from human carcinoma cells: a plasma parameter for xenograft tumour studies. Br J Cancer 1999; 81: 203–11.CrossRefPubMedGoogle Scholar
  36. Hoskins, W. J. Prospective on ovarian cancer: why prevent? J Cell Biochem Suppl 1995; 23: 189–99.CrossRefPubMedGoogle Scholar
  37. Huang, L. W., Garrett, A. P., Bell, D. A., Welch, W. R., Berkowitz, R. S., and Mok, S. C. Differential expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 protein and mRNA in epithelial ovarian tumors. Gynecol Oncol 2000; 77: 369–76.CrossRefPubMedGoogle Scholar
  38. Johansson, N., Vaalamo, M., Grenman, S., Hietanen, S., Klemi, P., Saarialho-Kere, U., and Kahari, V. M. Collagenase-3 (MMP-13) is expressed by tumor cells in invasive vulvar squamous cell carcinomas. Am J Pathol 1999; 154: 469–80.CrossRefPubMedGoogle Scholar
  39. Kanamori, Y., Matsushima, M., Minaguchi, T., Kobayashi, K., Sagae, S., Kudo, R., Terakawa, N., and Nakamura, Y. Correlation between expression of the matrix metalloproteinase-IGoogle Scholar
  40. gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region. Cancer Res 1999; 59: 4225–7.Google Scholar
  41. Kanemoto, T., Martin, G. R., Hamilton, T. C., and Fridman, R. Effects of synthetic peptides and protease inhibitors on the interaction of a human ovarian cancer cell line (NIH:OVCAR3) with a reconstituted basement membrane (Matrigel). Invasion Metastasis 1991; 11: 84–92.PubMedGoogle Scholar
  42. Karlan, B. Y., Amin, W., Band, V., Zurawski, V. R., Jr., and Littlefield, B. A. Plasminogen activator secretion by established lines of human ovarian carcinoma cells in vitro. Gynecol Oncol 1988; 31: 103–12.CrossRefPubMedGoogle Scholar
  43. Karlan, B. Y., Rivero, J. A., Crabtree, M. E., and Littlefield, B. A. Different mechanisms contribute to simultaneous inhibition of urokinase and tissue-type plasminogen activators by glucocorticoids in human ovarian carcinoma cells. Mol Endocrinol 1989; 3: 1006–13.CrossRefPubMedGoogle Scholar
  44. Kikkawa, F., Tamakoshi, K., Nawa, A., Shibata, K., Yamagata, S., Yamagata, T., and Suganuma, N. Positive correlation between inhibitors of matrix metalloproteinase 1 and matrix metalloproteinases in malignant ovarian tumor tissues. Cancer Lett 1997; 120: 10915.CrossRefGoogle Scholar
  45. Kobayashi, H., Fujie, M., Shinohara, H., Ohi, H., Sugimura, M., and Terao, T. Effects of urinary trypsin inhibitor on the invasion of reconstituted basement membranes by ovarian cancer cells, Int J Cancer 1994; 57: 378–84.CrossRefPubMedGoogle Scholar
  46. Kobayashi, H., Moniwa, N., Sugimura, M., Shinohara, H., Ohi, H., and Terao, T. Increased cell-surface urokinase in advanced ovarian cancer. Jpn J Cancer Res 1993; 84: 633–40.CrossRefPubMedGoogle Scholar
  47. Kobayashi, H., Moniwa, N., Sugimura, M., Shinohara, H., Ohi, H., and Terao, T. Effects of membrane-associated cathepsin B on the activation of receptor-bound prourokinase and subsequent invasion of reconstituted basement membranes. Biochim Biophys Acta 1993; 1178: 55–62.CrossRefPubMedGoogle Scholar
  48. Kobayashi, H., Ohi, H., Sugimura, M., Shinohara, H., Fujii, T., and Terao, T. Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Res 1992; 52: 3610–4.PubMedGoogle Scholar
  49. Kobayashi, H., Shinohara, H., Ohi, H., Sugimura, M., Terao, T., and Fujie, M. Urinary trypsin inhibitor (UTI) and fragments derived from UTI by limited proteolysis efficiently inhibit tumor cell invasion. Clin Exp Metastasis 1994; 12: 117–28.CrossRefPubMedGoogle Scholar
  50. Kohn, E. C., Jacobs, W., Kim, Y. S., Alessandro, R., Stetler-Stevenson, W. G., and Liotta, L. A. Calcium influx modulates expression of matrix metalloproteinase-2 (72- kDa type IV collagenase, gelatinase A). J Biol Chem 1994; 269: 21505–11.PubMedGoogle Scholar
  51. Kuhn, W., Pache, L., Schmalfeldt, B., Dettmar, P., Schmitt, M., Janicke, F., and Graeff, H. Urokinase (uPA) and PAI-1 predict survival in advanced ovarian cancer patients (FIGO III) after radical surgery and platinum-based chemotherapy. Gynecol Oncol 1994; 55: 401–9.CrossRefPubMedGoogle Scholar
  52. Leber, T. M., and Balkwill, F. R. Regulation of monocyte MMP-9 production by TNF-alpha and a tumour-derived soluble factor (MMPSF). Br J Cancer 1998; 78: 724–32.CrossRefPubMedGoogle Scholar
  53. Liotta, L. A., Rao, C. N., and Wewer, U. M. Biochemical interactions of tumor cells with the basement membrane. Annu Rev Biochem 1986; 55: 1037–57.CrossRefPubMedGoogle Scholar
  54. Macaulay, V. M., O’Byrne, K. J., Saunders, M. P., Braybrooke, J. P., Long, L., Gleeson, F., Mason, C. S., Harris, A. L., Brown, P., and Talbot, D. C. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res 1999; 5: 513–20.PubMedGoogle Scholar
  55. Malfetano, J., Teng, N., and Barter, J. Marimastat in patients with advanced cancer of theGoogle Scholar
  56. ovary: A dose-finding study. Proc Am Soc Clin Oncol 1997; 16: 373a.Google Scholar
  57. Massova, I., Kotra, L. P., Fridman, R., and Mobashery, S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 1998; 12: 1075–95.PubMedGoogle Scholar
  58. Meden, H., Marx, D., Rath, W., Kron, M., Fattahi-Meibodi, A., Hinney, B., Kuhn, W., and Schauer, A. Overexpression of the oncogene c-erb B2 in primary ovarian cancer: evaluation of the prognostic value in a Cox proportional hazards multiple regression. Int J Gynecol Pathol 1994; 13: 45–53.CrossRefPubMedGoogle Scholar
  59. Medl, M., Ogris, E., Peters-Engl, C., and Leodolter, S. TATI (tumour-associated trypsin inhibitor) as a marker of ovarian cancer. Br J Cancer 1995; 71: 1051–4.CrossRefPubMedGoogle Scholar
  60. Mirshahi, S. S., Lounes, K. C., Lu, H., Pujade-Lauraine, E., Mishal, Z., Benard, J., Bemadou, A., Soria, C., and Soria, J. Defective cell migration in an ovarian cancer cell line is associated with impaired urokinase-induced tyrosine phosphorylation. FEBS Lett 1997; 411: 322–6.CrossRefPubMedGoogle Scholar
  61. Miyagi, E., Yasumitsu, H., Hirahara, F., Minaguchi, H., Koshikawa, N., Miyazaki, K., and Umeda, M. Characterization of matrix-degrading proteinases and their inhibitors secreted by human gynecological carcinoma cells. Jpn J Cancer Res 1995; 86: 568–76.CrossRefPubMedGoogle Scholar
  62. Mondino, A., Resnati, M., and Blasi, F. Structure and function of the urokinase receptor. Thromb Haemost 1999; 82 Suppl 1: 19–22.Google Scholar
  63. Moore, D. H., Allison, B., Look, K. Y., Sutton, G. P., and Bigsby, R. M. Collagenase expression in ovarian cancer cell lines. Gynecol Oncol 1997; 65: 78–82.CrossRefPubMedGoogle Scholar
  64. Mort, J. S., Leduc, M., and Recklies, A. D. A latent thiol proteinase from ascitic fluid of patients with neoplasia. Biochim Biophys Acta 1981; 662: 173–80.CrossRefPubMedGoogle Scholar
  65. Moser, T. L., Young, T. N., Rodriguez, G. C., Pizzo, S. V., Bast, R. C., Jr., and Stack, M. S. Secretion of extracellular matrix-degrading proteinases is increased in epithelial ovarian carcinoma. Int J Cancer 1994; 56: 552–9.CrossRefPubMedGoogle Scholar
  66. Murdoch, W. J. Proteolytic and cellular death mechanisms in ovulatory ovarian rupture. Biol Signals Recept 2000; 9: 102–14.CrossRefPubMedGoogle Scholar
  67. Nagase, H., and Woessner, J. F., Jr.. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491–4.CrossRefPubMedGoogle Scholar
  68. Naylor, M. S., Stamp, G. W., Davies, B. D., and Balkwill, F. R. Expression and activity of MMPS and their regulators in ovarian cancer. Int J Cancer 1994; 58: 50–6.CrossRefPubMedGoogle Scholar
  69. Nelson, A. R., Fingleton, B., Rothenberg, M. L., and Matrisian, L. M. MatrixGoogle Scholar
  70. metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000; 18: 113549.Google Scholar
  71. Nemunaitis, J., Poole, C., Primrose, J., Rosemurgy, A., Malfetano, J., Brown, P., Berrington, A., Cornish, A., Lynch, K., Rasmussen, H., et al. Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: selection of a biologically active and tolerable dose for longer-term studies. Clin Cancer Res 1998; 4: 1101–9.PubMedGoogle Scholar
  72. Niedbala, M. J., Madiyalakan, R., Matta, K., Crickard, K., Sharma, M., and Bernacki, R. J. Role of glycosidases in human ovarian carcinoma cell mediated degradation of subendothelial extracellular matrix. Cancer Res 1987; 47: 4634–41.PubMedGoogle Scholar
  73. Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M., and Okada, Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 1997; 272: 2446–51.CrossRefPubMedGoogle Scholar
  74. Patton, S. E., Martin, M. L., Nelsen, L. L., Fang, X., Mills, G. B., Bast, R. C., Jr., and Ostrowski, M. C. Activation of the ras-mitogen-activated protein kinase pathway and phosphorylation of ets-2 at position threonine 72 in human ovarian cancer cell lines. Cancer Res 1998; 58: 2253–9.PubMedGoogle Scholar
  75. Pedersen, N., Schmitt, M., Ronne, E., Nicoletti, M. I., Hoyer-Hansen, G., Conese, M., Giavazzi, R., Dano, K., Kuhn, W., Janicke, F., and et al. A ligand-free, soluble urokinase receptor is present in the ascitic fluid from patients with ovarian cancer. J Clin Invest 1993; 92: 2160–7.CrossRefPubMedGoogle Scholar
  76. Poole, C., Adams, M., and Barley, V. A dose-finding study of marimastat, an oral matrix metalloproteinase inhibitor in patients with advanced ovarian cancer. Ann Oncol 1996; 7: 68.Google Scholar
  77. Pujade-Lauraine, E., Lu, H., Mirshahi, S., Soria, J., Soria, C., Bernadou, A., Kruithof, E. K., Lijnen, H. R., and Burtin, P. The plasminogen-activation system in ovarian tumors. Int J Cancer 1993; 55: 27–31.CrossRefPubMedGoogle Scholar
  78. Pustilnik, T. B., Estrella, V., Wiener, J. R., Mao, M., Eder, A., Watt, M. A., Bast, R. C., Jr., and Mills, G. B. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res 1999; 5: 3704–10.PubMedGoogle Scholar
  79. Rabbani, S. A. Metalloproteases and urokinase in angiogenesis and tumor progression, In Vivo 1998; 12: 135–42.PubMedGoogle Scholar
  80. Rasmussen, H. S., and McCann, P. P. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther 1997; 75: 69–75.CrossRefPubMedGoogle Scholar
  81. Scambia, G., Benedetti, P., Ferrandina, G., Battaglia, F., Baiocchi, G., and Mancuso, S. Cathepsin D assay in ovarian cancer: correlation with pathological features and receptors for oestrogen, progesterone and epidermal growth factor. Br J Cancer 1991; 64: 182–4.CrossRefPubMedGoogle Scholar
  82. Scambia, G., Panici, P. B., Ferrandina, G., Salerno, G., D’Agostino, G., Distefano, M., de Vincenzo, R., Ercoli, A., and Mancuso, S. Clinical significance of cathepsin D in primary ovarian cancer. Eur J Cancer 1994; 7: 935–40.CrossRefGoogle Scholar
  83. Shibata, K., Kikkawa, F., Nawa, A., Suganuma, N., and Hamaguchi, M. Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Res 1997; 57: 5416–20.Google Scholar
  84. Shibata, K., Kikkawa, F., Nawa, A., Thant, A. A., Naruse, K., Mizutani, S., and Hamaguchi, M. Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells. Cancer Res 1998; 58: 900–3.PubMedGoogle Scholar
  85. Shigemasa, K., Tanimoto, H., Sakata, K., Nagai, N., Pamiley, T. H., Ohama, K., and O’Brien, T. J. Induction of matrix metalloprotease-7 is common in mucinous ovarian tumors including early stage disease. Med Oncol 2000; 17: 52–8.CrossRefPubMedGoogle Scholar
  86. Sier, C. F., Stephens, R., Bizik, J., Mariani, A., Bassan, M., Pedersen, N., Frigerio, L., Ferrari, A., Dano, K., Brunner, N., and Blasi, F. The level of urokinase-type plasminogen activator receptor is increased in serum of ovarian cancer patients. Cancer Res 1998; 58: 1843–9.PubMedGoogle Scholar
  87. Tanimoto, H., Underwood, L. J., Shigemasa, K., Parmley, T. H., Wang, Y., Yan, Y., Clarke, J., and O’Brien, T. J. The matrix metalloprotease pump-1 (MMP-7, Matrilysin): A candidate marker/target for ovarian cancer detection and treatment. Tumour Biol 1999; 20: 88–98.CrossRefPubMedGoogle Scholar
  88. Tanimoto, H., Yan, Y., Clarke, J., Korourian, S., Shigemasa, K., Parmley, T. H., Parham, G. P., and O’Brien, T. J. Hepsin, a cell surface serine protease identified in hepatoma cells, is overexpressed in ovarian cancer. Cancer Res 1997; 57: 2884–7.PubMedGoogle Scholar
  89. Ueda, M., Ueki, M., Terai, Y., Ueki, K., Kumagai, K., Fujii, H., Yoshizawa, K., and Nakajima, M. Biological implications of growth factors on the mechanism of invasion in gynecological tumor cells. Gynecol Obstet Invest 1999; 48: 221–8.CrossRefPubMedGoogle Scholar
  90. Wahlberg, K., Hoyer-Hansen, G., and Casslen, B. Soluble receptor for urokinase plasminogen activator in both full-length and a cleaved form is present in high concentration in cystic fluid from ovarian cancer. Cancer Res 1998; 58: 3294–8.PubMedGoogle Scholar
  91. Westerlund, A., Apaja-Sarkkinen, M., Hoyhtya, M., Puistola, U., and Turpeenniemi-Hujanen, T. Gelatinase A-immunoreactive protein in ovarian lesions-prognostic value in epithelial ovarian cancer. Gynecol Oncol 1999; 75: 91–8.CrossRefPubMedGoogle Scholar
  92. Westerlund, A., Hujanen, E., Puistola, U., and Turpeenniemi-Hujanen, T. Fibroblasts stimulate human ovarian cancer cell invasion and expression of 72-kDa gelatinase A (MMP-2). Gynecol Oncol 1997; 67: 76–82.CrossRefPubMedGoogle Scholar
  93. Wilhelm, O., Hafter, R., Coppenrath, E., Pflanz, M. A., Schmitt, M., Babic, R., Linke, R., Gossner, W., and Graeff, H. Fibrin-fibronectin compounds in human ovarian tumor ascites and their possible relation to the tumor stroma. Cancer Res 1988; 48: 3507–14.PubMedGoogle Scholar
  94. Wilhelm, O., Hafter, R., Henschen, A., Schmitt, M., and Graeff, H. Role of plasmin in the degradation of the stroma-derived fibrin in human ovarian carcinoma. Blood 1990; 75: 1673–8.PubMedGoogle Scholar
  95. Wilhelm, O., Schmitt, M., Hohl, S., Senekowitsch, R., and Graeff, H. Antisense inhibition of urokinase reduces spread of human ovarian cancer in mice. Clin Exp Metastasis 1995; 13: 296–302.CrossRefPubMedGoogle Scholar
  96. Wilhelm, O., Weidle, U., Hohl, S., Rettenberger, P., Schmitt, M., and Graeff, H. Recombinant soluble urokinase receptor as a scavenger for urokinase-type plasminogen activator (uPA). Inhibition of proliferation and invasion of human ovarian cancer cells. FEBS Lett 1994; 337: 131–4.CrossRefPubMedGoogle Scholar
  97. Xu, F. J., Stack, S., Boyer, C., O’Briant, K., Whitaker, R., Mills, G. B., Yu, Y. H., and Bast, R. C., Jr. Heregulin and agonistic anti-p185(c-erbB2) antibodies inhibit proliferation but increase invasiveness of breast cancer cells that overexpress p185(c-erbB2): increased invasiveness may contribute to poor prognosis. Clin Cancer Res 1997; 3: 1629–34.PubMedGoogle Scholar
  98. Xu, Y., Fang, X. J., Casey, G., and Mills, G. B. Lysophospholipids activate ovarian and breast cancer cells. Biochem J 1995; 309: 933–40.PubMedGoogle Scholar
  99. Xu, Y., Gaudette, D. C., Boynton, J. D., Frankel, A., Fang, X. J., Sharma, A., Hurteau, J., Casey, G., Goodbody, A., Mellors, A., and et al. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients, Clin Cancer Res 1995; 1: 1223–32.PubMedGoogle Scholar
  100. Xu, Y., Shen, Z., Wiper, D. W., Wu, M., Morton, R. E., Elson, P., Kennedy, A. W., Belinson, J., Markman, M., and Casey, G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers [see comments]. Jama 1998; 280: 719–23.CrossRefPubMedGoogle Scholar
  101. Young, T. N., Rodriguez, G. C., Moser, T. L., Bast, R. C., Jr., Pizzo, S. V., and Stack, M. S. Coordinate expression of urinary-type plasminogen activator and its receptor accompanies malignant transformation of the ovarian surface epithelium. Am J Obstet Gynecol 1994; 170: 1285–96.PubMedGoogle Scholar
  102. Young, T. N., Rodriguez, G. C., Rinehart, A. R., Bast, R. C., Jr., Pizzo, S. V., and Stack, M. S. Characterization of gelatinases linked to extracellular matrix invasion in ovarian adenocarcinoma: purification of matrix metalloproteinase 2. Gynecol Oncol 1996; 62: 89–99.CrossRefPubMedGoogle Scholar
  103. Young, T.N., Pizzo, S.V., Stack, M.S. A plasma membrane-associated component of ovarian adenocarcinoma cells enhances the catalytic efficiency of matrix metalloproteinase-2. J Biol Chem 1995; 270: 999–1002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Supurna Ghosh
    • 1
  • Yi Wu
    • 1
  • M. Sharon Stack
    • 1
  1. 1.Departments of Cell & Molecular Biology and Obstetrics & GynecologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations