Ovarian Cancer pp 305-329 | Cite as

Adhesion Molecules

  • Amy P. N. Skubitz
Part of the Cancer Treatment and Research book series (CTAR, volume 107)


This chapter will focus on the role of adhesion molecules in ovarian carcinoma. Specifically, we will focus on the interactions that occur between ovarian carcinoma cells and peritoneal mesothelial cells as well as their associated extracellular matrices (ECM). Cell-cell and cell-ECM interactions play an important role in cancer cell adhesion, migration, invasion, growth, survival, and programmed cell death (apoptosis). By better understanding the molecules involved in ovarian carcinoma cell adhesion, it may be possible to identify reagents that can prevent the dissemination of ovarian carcinoma in vivo.


Hyaluronic Acid Ovarian Carcinoma Mesothelial Cell Ovarian Surface Epithelium Integrin Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landis SH, Murray T, Bolden SH, Wingo PA. Cancer statistics. Ca: Cancer J Clin 1999; 49: 8–31.CrossRefGoogle Scholar
  2. 2.
    Dietl J, Marzusch K. Ovarian surface epithelium and human ovarian cancer. Gynecol Obstet Invest 1993; 35: 129–135.PubMedCrossRefGoogle Scholar
  3. 3.
    Teneriello MG, Park RC. Early detection of ovarian cancer. CA–Cancer J Clin 1995; 45: 71–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Kataosha A, Nishida T, Sugiyama T, Ushijima K, Ohta S, Kumagai S, Yakushiji M, Kojiro M, Morimatsu M. A study on the distribution of metastases at autopsy in 70 patients with ovarian cancer. Nippon Sanka 1994; 46: 337–344.Google Scholar
  5. 5.
    Cannistra SA. Why should the clonogenic cell assay be prognostically important in ovarian cancer? J Clin Oncol 1994; 9: 368–370.Google Scholar
  6. 6.
    Omura GA, Brady MF, Homesley HD, Yordan E, Major FJ, Buchsbaum HJ, Park RC Long-term follow-up and prognostic factor analysis in advanced ovarian carcinoma: the Gynecologic Oncology Group experience. J Clin Oncol 1991; 9 (7): 1138–1150.PubMedGoogle Scholar
  7. 7.
    Albelda SM. Role of cell adhesion molecules in tumor progression and metastasis. In: Wegner CD, ed. Adhesion Molecules, San Diego, CA: Academic Press, pp. 71–88, 1994.Google Scholar
  8. 8.
    Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J 1990; 4: 2868–2879.PubMedGoogle Scholar
  9. 9.
    Faassen AE, Drake SL, lids J, Knutson JR, McCarthy JB. Mechanisms of normal cell adhesion to the extracellular matrix and alterations associated with tumor invasion and metastasis. In: Weinstein RS, Graham AR, Anderson RE, et al., ed. Advances in Pathology and Laboratory Medicine, Chicago, IL: Mosby Year Book Inc., pp. 229–259, 1992.Google Scholar
  10. 10.
    Honn KV, Tang DG. Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Met Rev 1994; 11: 353–375.Google Scholar
  11. 11.
    Haynes BF, Liao HX, Patton KL. The transmembrane hyaluronate receptor (CD44): multiple function, multiple forms. Cancer Cells 1991; 3: 347–350.PubMedGoogle Scholar
  12. 12.
    Pigott R, Power C. The adhesion molecule facts book, Academic Press, London, pp. 1190, 1993.Google Scholar
  13. 13.
    Knudson W, Knudson CB. Assembly of a chondrocyte-like pericellular matrix on nonchondrogenic cells: Role of the cell surface hyaluronan receptors in the assembly of a pericellular matrix. J Cell Sci 1991; 99: 227–235.PubMedGoogle Scholar
  14. 14.
    Solursh M, Hardingham TE, Hascall VC, Kimura JH. Separate effects of exogenous hyaluronic acid on proteoglycan synthesis and deposition in pericellular matrix by cultured chick embryo limb chondrocytes. Dev Biol 1980; 75: 121–129.PubMedCrossRefGoogle Scholar
  15. 15.
    Kimura JH, Hardingham TE, Hascall VC, Solursh M. Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem 1979; 254: 2600–2609.PubMedGoogle Scholar
  16. 16.
    Hascall VC, Heinegard D. Aggregation of cartilage proteoglycans. J Biol Chem 1974; 249: 4242–4249.PubMedGoogle Scholar
  17. 17.
    Knudson CB, Keuttner KE. A role for hyaluronate in chondrocyte pericellular matrix assembly. Orthoped Trans 1990; 14: 370.Google Scholar
  18. 18.
    Knudson CB, Coombs LJ, Kuettner KE. Chondrocyte pericellular matrix assembly and displacement mediated via hyaluronate. Orthoped Trans 1991; 15: 307.Google Scholar
  19. 19.
    Rodgers KE, Campeau J, Johns DB, diZerega GS, Girgis W. Reduction of adhesion formation with hyaluronic acid after peritoneal surgery in rabbits. Fertil Steril 1997; 67: 553–558.PubMedCrossRefGoogle Scholar
  20. 20.
    Morris ER, Rees DA, Welsh EJ. Conformation and dynamic interactions in hyaluronate solution. J Mol Biol 1983; 138: 383–386.CrossRefGoogle Scholar
  21. 21.
    Darzynkiewicz A, Balazs EA. Effect of connective tissue intracellular matrix on lymphocyte stimulation. I. Suppression of lymphocyte stimulation by hyaluronic acid. Exp Cell Res 1971; 66: 113–117.PubMedCrossRefGoogle Scholar
  22. 22.
    Balazs EA, Darzynkiewicz A. The effect of hyaluronic acid on fibroblasts, mononuclear phagocytes and lymphocytes. In: Kulonen E, Pikkarainen J, eds. Biology of the Fibroblast, New York, pp. 237–249, 1973.Google Scholar
  23. 23.
    Pessac B, Defendi V (1972) Cell aggregation: role of acid mucopolysaccharides. Science 172: 898–903.CrossRefGoogle Scholar
  24. 24.
    Hakansson L, Hallgren R, Venge P. Regulation of granulocyte function by hyaluronic acid in vitro and in vivo effects phagocytosis, locomotion and metabolism. J Clin Invest 1980; 66: 298–304.PubMedCrossRefGoogle Scholar
  25. 25.
    Forrester V, Balazs EA. Inhibition of phagocytosis by high molecular weight hyaluronate. Endocrinology 1980; 40: 435–442.Google Scholar
  26. 26.
    Shannon BT, Love SH, Myroik QN. Participation of hyaluronic acid in the macrophage disappearance reaction. Immunol Commun 1980; 9: 735–746.PubMedGoogle Scholar
  27. 27.
    Ahgren T, Jarstrand C. Hyaluronic acid enhances phagocytosis of human monocytes in vitro. J Clin Immunol 1984; 4: 246–252.CrossRefGoogle Scholar
  28. 28.
    Hakansson L, Venge P. The molecular basis of the hyaluronic acid-mediated stimulation of the granulocyte function. J Immunol 1987; 138: 4347–4351.PubMedGoogle Scholar
  29. 29.
    Ponzin D, Vacchia P, Toffano G, Giordano C, Bruni A. Characterization of macrophages elicited by intraperitoneal injection of hyaluronate. Agents and Actions 1986; 18: 544–546.PubMedCrossRefGoogle Scholar
  30. 30.
    Feinberg RN, Beebe DC. Hyaluronate in vasculogenesis. Science 1983 220: 1177–1179.PubMedCrossRefGoogle Scholar
  31. 31.
    West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science 1985; 228: 1324–1326.PubMedCrossRefGoogle Scholar
  32. 32.
    Edelstam GAB, Laurent UBG, Lundkvist 0E, Fraser JRE, Laurent TC. Concentration and turnover of intraperitoneal hyaluronan during inflammation. Inflammation 1992; 16: 459469.Google Scholar
  33. 33.
    Zeng C, Toole BP, Kinney SD, Kuo J, Stamenkovic I. Inhibition of tumor growth in vivo by hyaluronan oligomers. Int J Cancer 1998; 77: 396–401.PubMedCrossRefGoogle Scholar
  34. 34.
    Cannistra SA, Abu-Jawdeh G, Niloff J, Strobel T, Swanson L, Andersen J, Ottensmeier C CD44 variant expression is a common feature of epithelial ovarian cancer: lack of association with standard prognostic factors. J Clin Oncol 1995; 13 (8): 1912–1921.PubMedGoogle Scholar
  35. 35.
    Ropponen K, Tammi M, Parkkinen J, Eskelinen M, Tammi R, Lipponen P, Agren U, Alhava E, Kosma VM. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res 1998; 58 (2): 342–347.PubMedGoogle Scholar
  36. 36.
    Sy M, Guo Y, Stamenkovic I. Inhibition of tumor growth in vivo with soluble CD44immunoglobulin fusion protein. J Exp Med 1992; 176: 623–627.PubMedCrossRefGoogle Scholar
  37. 37.
    Bartolazzi A, Peach R, Aruffo A, Stamenkovic I. Interaction between CD44 and hyaluronate is directly implicated in regulation of tumor development. J Exp Med 1994; 180: 53–66.PubMedCrossRefGoogle Scholar
  38. 38.
    Zahalka M, Okon E, Gosslar U, Holzmann B, Naor D. Lymph node (but not spleen) invasion by murine lymphoma is both CD44- and hyaluronate-dependent. J Immunol 1995; 154: 5345–5355.PubMedGoogle Scholar
  39. 39.
    Salmi M, Gron-Virta K, Sointu P, Grenman R, Kalimo H, Jalkanen S. Regulated expression of exon v6 containing isoforms of CD44 in man: downregulation during malignant transformation of tumors of squamocellular origin. J Cell Biol 1993; 122: 43 1442.Google Scholar
  40. 40.
    Sleeman J, Arming S, Moll J, Hekele A, Rudy W, Sherman L, Kreil G, Ponta H, Herrlich P. Hyaluronate-independent metastatic behavior of CD44 variant-expressing pancreatic carcinoma cells. Cancer Res 1996; 56: 3134–3141.PubMedGoogle Scholar
  41. 41.
    Speiser P, Wanner C, Breitenecker G, Kohlberger P, Kainz C. CD-44 is not involved in the metastatic spread of ovarian cancer in vivo. Anticancer Res 1995; 15 (6B): 2767–2769.PubMedGoogle Scholar
  42. 42.
    Cannistra SA, Kansas GS, Niloff J, DeFranzo B, Kim Y, Ottensmeier C. Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Res 1993; 53: 3830–3838.PubMedGoogle Scholar
  43. 43.
    Lessan K, Skubitz APN. Binding of an ovarian carcinoma cell line to peritoneal mesothelial cells in vitro is partially inhibited by an antibody against the 131 integrin subunit. FASEB J 1998; 12: A377.Google Scholar
  44. 44.
    Lessan K, Aguiar DJ, Oegema T, Siebenson L, Skubitz APN. CD44 and the ß1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Amer J Path 1999; 154: 1525–1537.PubMedCrossRefGoogle Scholar
  45. 45.
    Gardner MJ, Catterall JB, Jones LM, Turner GA. Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: a possible step in peritoneal metastasis. Clin Exp Met 1996; 14 (4): 325–334.CrossRefGoogle Scholar
  46. 46.
    Gardner MJ, Jones LMH, Catterall JB, Turner GA. Expression of cell adhesion molecules on ovarian tumour cell lines and mesothelial cells, in relation to ovarian cancer metastasis. Cancer Lett 1995; 91: 229–234.PubMedCrossRefGoogle Scholar
  47. 47.
    Cannistra SA, DeFranzo B, Niloff J, Ottensmeier C. Functional heterogeneity of CD44 molecules in ovarian cancer cell lines. Clin Cancer Res 1995; 1: 333–342.PubMedGoogle Scholar
  48. 48.
    Stickeler E, Runnebaum IB, Möbus VJ, Kieback DG, Kreienberg R. Expression of CD44 standard and variant isoforms v5, v6 and v7 in human ovarian cancer cell lines. Anticancer Res 1997; 17: 1871–1876.PubMedGoogle Scholar
  49. 49.
    Taylor DD, Gercel-Taylor C, Gall SA. Expression and shedding of CD44 variant isoforms in patients with gynecologic malignancies. J Soc Gynecol Invest 1996; 3: 289–294.CrossRefGoogle Scholar
  50. 50.
    Gadducci A, Ferdeghini M, Fanucchi A, Annicchiarico C, Cosio S, Prontera C, Bianchi R, Genazzani AR. Serum assay of soluble CD44 standard (sCD44-st), CD44 splice variant v5 (sCD44-v5), and CD44 splice variant v6 (sCD44-v6) in patients with epithelial ovarian cancer. Anticancer Res 1997; 17: 4463–4466.PubMedGoogle Scholar
  51. 51.
    Zeimet AG, Widschwendter M, Uhl-Steidl M, Mueller-Holzner E, Daxenbichler G, Marth C, Dapunt O. High serum levels of soluble CD44 variant isoform v5 are associated with favourable clinical outcome in ovarian cancer. Brit J Cancer 1997; 76 (12): 1646–1651.PubMedCrossRefGoogle Scholar
  52. 52.
    Jones LMH, Gardner MJ, Catterall JB, Turner GA. Hyaluronic acid secreted by mesothelial cells: a natural barrier to ovarian cancer cell adhesion. Clin Exp Met 1995; 13: 373–380.CrossRefGoogle Scholar
  53. 53.
    Strobel T, Swanson L, Cannistra SA. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: A novel role for CD44 in the process of peritoneal implantation. Cancer Res 1997; 57: 1228–1232.PubMedGoogle Scholar
  54. 54.
    Casey RC, Skubitz APN. CD44 and 131 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clin Exp Metastatis, 2000; in press.Google Scholar
  55. 55.
    Zhu D, Bourguignon LYW. Interaction between CD44 and the repeat domain of ankyrin promotes hyaluronic acid-mediated ovarian tumor cell migration. J Cell Physiology 2000; 183: 182–195.CrossRefGoogle Scholar
  56. 56.
    Newham P, Humphries MJ. Integrin adhesion receptors: structure, function and implications for biomedicine. Mol Med Today 1996; 2 (7): 304–313.PubMedCrossRefGoogle Scholar
  57. 57.
    Sheppard D. Epithelial integrins. Bioessays 1996; 18 (8): 655–660.PubMedCrossRefGoogle Scholar
  58. 58.
    Tozer EC, Hughes PE, Loftus JC. Ligand binding and affinity modulation of integrins. Biochem Cell Biology 1996; 74 (6): 785–798.CrossRefGoogle Scholar
  59. 59.
    LaFlamme SE, Auer KL. Integrin signalling. Sem Cancer Biol 1996; 7: 111–118.CrossRefGoogle Scholar
  60. 60.
    Dedhar S, Hannigan GE. Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol 1996; 8: 657–669.PubMedCrossRefGoogle Scholar
  61. 61.
    Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 1995; 11: 549–599.PubMedCrossRefGoogle Scholar
  62. 62.
    Kramer RH, Enenstein J, Waleh NS. Integrin Structure and Ligand Specificity in Cell-Matrix Interactions. Edited by Rohrbach DH, Timpl R. Molecular and Cellular Aspects of Basement Membranes. San Diego, Academic Press, Inc., pp. 239–265, 1993.Google Scholar
  63. 63.
    Mercurio AM. Laminin: multiple forms, multiple receptors. Curr Opin Cell Biol 1990; 2: 845–849.PubMedCrossRefGoogle Scholar
  64. 64.
    Dedhar S, Saulnier R, Nagle R, Overall CM. Specific alterations in the expression of a3ß1 and a6134 integrins in highly invasive and metastatic variants of human prostate carcinoma cells selected by in vitro invasion through reconstituted basement membrane. Clin Exp Metastasis 1993; 11: 391–400.PubMedCrossRefGoogle Scholar
  65. 65.
    Sonenberg A, Calafat J, Janssen H, Daams H, van der Raaij-Helmer LMH, Falcioni R, Kennel Si, Aplin JD, Baker J, Loizidou M, Garrod D. Integrin a6414 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol 1991; 113: 907–917.CrossRefGoogle Scholar
  66. 66.
    Sonnenberg A, Linders CJT, Daams JH, Kennel SJ. The a6ß4 protein complexes: tissue distribution and biochemical properties. J Cell Sci 1990; 96: 207–217.PubMedGoogle Scholar
  67. 67.
    Peltonen J, Larjava H, Jaakkola S, Gralnick H, Akiyama SK, Yamada SS, Yamada KM. Localization of integrin receptors for fibronectin, collagen, and laminin in human skin. Variable expression in basal and squamous cell carcinomas. J Clin Invest 1990; 84: 1916 1923.Google Scholar
  68. 68.
    Natali PG, Nicotra MR, Cavaliere R, Giannarelli D, Bigotti A. Tumor progression in human malignant melanoma is associated with changes in a6/01 laminin receptor. Int J Cancer 1991; 49: 168–172.PubMedCrossRefGoogle Scholar
  69. 69.
    Gehlsen KR, Davis GE, Sriramarao P. Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis 1992; 10: 111–120.PubMedCrossRefGoogle Scholar
  70. 70.
    Liebert M, Lee HS, Carey TE, Grossman HB. Loss of association of the a6134 integrin and collagen VII in invasive bladder cancer. Proc Am Assoc Cancer Res 1992; 33: 33.Google Scholar
  71. 71.
    Bao L, Tarin D. Correlation of VLA-4 integrin expression with metastatic potential in various human tumour cell lines. Proc Am Assoc Cancer Res 1992; 33: 69.Google Scholar
  72. 72.
    Kramer RH, Waleh N, Vu MP, Cheng YF, Ramos RM. Reduced levels of the lamininbinding 001 integrin correlate with increased metastatic potential in malignant melanoma. Proc Am Assoc Cancer Res 1992; 33: 197.Google Scholar
  73. 73.
    Quaranta V, Tamura RN, Collo G, Cooper HM, Hormia M, Rozzo C, Gaietta G, Starr L Distinctive functions of a6ß4 and other integrins in epithelial cells. Edited by Cheresh DA, Mecham RP. Integrins: Molecular and Biological Responses to the Extracellular Matrix. San Diego, Academic Press, pp. 141–161, 1994.Google Scholar
  74. 74.
    Rossen K, Dahlstrom KK, Mercurio AM, Wewer UM. Expression of the a6ß4 integrin by squamous cell carcinomas and basal cell carcinomas: Possible relation to invasive potential? Acta Derm Venereol (Stockh) 1994; 74: 101–105.Google Scholar
  75. 75.
    Savoia P, Trusolino L, Pepino E, Cremona O, Marchisio PC. Expression and topography of integrin and basement membrane proteins in epidermal carcinomas: basal but not squamous cell carcinomas display loss of a6ß4 and BM-600/nicein. J Invest Dermatol 1993; 101: 352–358.PubMedCrossRefGoogle Scholar
  76. 76.
    Stallmach A, Lampe BV, Matthes H, Bomhöft G, Riecken EO. Diminished expression of integrin adhesion molecules on human colonic epithelial cells during the benign to malign tumour transformation. Gut 1992; 33: 342–346.PubMedCrossRefGoogle Scholar
  77. 77.
    Koukoulis GK, Virtanen I, Korhonen M, Laitinen L, Quaranta V, Gould VE. Immunohistochemical localization of integrins in the normal, hyperplastic, and neoplastic breast. Am J Pathol 1991; 139: 787–799.PubMedGoogle Scholar
  78. 78.
    Costantini RM, Falcioni R, Battista P, Zupi G, Kennel SJ, Colasante A, Venturo I, Curcio CG, Sacchi A. Integrin (a6/134) expression in human lung cancer as monitored by specific monoclonal antibodies. Cancer Res 1990; 50: 6107–6112.Google Scholar
  79. 79.
    Kimmel KA, Carey TE. Altered expression in squamous carcinoma cells of an orientation restricted epithelial antigen detected by monoclonal antibody A9. Cancer Res 1986; 46: 3614–3623.PubMedGoogle Scholar
  80. 80.
    Wolf GT, Carey TE, Schmaltz SP, McClatchey KD, Poore J, Glaser L, Hayashida DJS, Hsu S. Altered antigen expression predicts outcome in squamous cell carcinoma of the head and neck. J Natl Cancer Inst 1990; 82: 1566–1572.PubMedCrossRefGoogle Scholar
  81. 81.
    Lee EC, Lotz MM, Steele GD, Mercurio AM. The integrin a6ß4 is a laminin receptor. J Cell Biol 1992; 117: 671–678.PubMedCrossRefGoogle Scholar
  82. 82.
    Hall PA, Coates P, Lemoine NR, Horton MA. Characterization of integrin chains in normal and neoplastic human pancreas. J Pathology 1991; 165: 33–41.CrossRefGoogle Scholar
  83. 83.
    Skubitz APN, Bast RC Jr, Wayner EA, Letoumeau PC, Wilke MS. Expression of a6 and ß4 integrin in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am J Path 1996; 148: 1445–1461.PubMedGoogle Scholar
  84. 84.
    Tomita Y, Saito K. Possible significance of VLA-4 (alpha 4 beta 1) for hematogenous metastasis of renal cell carcinoma. Nippon Rinsho 1995; 53: 1666–1671.PubMedGoogle Scholar
  85. 85.
    Martin GR, Timpl R. Laminin and other basement membrane components. Ann Rev Cell Biol 1987; 3: 57–85.PubMedCrossRefGoogle Scholar
  86. 86.
    Timpl R, Dziadek M. Structure, development, and molecular pathology of basement membranes. Int Rev Exp Path 1986; 29: 1–112.PubMedCrossRefGoogle Scholar
  87. 87.
    Liotta LA, Rao CN, Wewer UM. Biochemical interactions of tumor cells with the basement membrane. Ann Rev Biochem 1986; 55: 1037–1057.PubMedCrossRefGoogle Scholar
  88. 88.
    Ellerbroek, SM, Fishman DA, Kearns AS, Bafetti LM, Stack MS. Ovarian carcinoma regulation of matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase through ßl integrin. Cancer Res 1999; 59: 1635–1641.PubMedGoogle Scholar
  89. 89.
    Moser TL, Pizzo SV, Bafetti LM, Fishman DA, Stack MS. Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the a2131 integrin. Int J Cancer 1996; 67: 695–701.PubMedCrossRefGoogle Scholar
  90. 90.
    Auersperg N, Maines-Bandiera SL, Kruk PA. Human surface epithelium: growth patterns and differentiation. In: Sharp F, Mason P, Blacket T, Berek J (eds), Ovarian Cancer III, London: Chapman & Hall, pp. 157–169, 1994.Google Scholar
  91. 91.
    Stack MS, Ellerbroek SM, Fishman DA. The role of proteolytic enzymes in the pathology of epithelial ovarian carcinoma. Int J Oncol 1998; 12: 569–576.PubMedGoogle Scholar
  92. 92.
    Afzel S, Lalani EN, Poulsom R, Stubbs A, Rowlinson G, Sato H, Seiki M, Stamp GW. MT1-MMP and MMP-2 mRNA expression in human ovarian tumors: possible implications for the role of desmoplastic fibroblasts. Hum Pathol 1998; 29: 155–165.CrossRefGoogle Scholar
  93. 93.
    Fishman DA, Bafetti LM, Stack MS. Membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation in primary human ovarian epithelial carcinoma cells. Inv Metastasis 1996; 16: 150–159.Google Scholar
  94. 94.
    Moser TL, Young TN, Rodriguez GC, Pizzo SV, Bast RC, Stack MS. Secretion of extracellular matrix-degrading proteinases is increased in epithelial ovarian carcinoma. Int J Cancer 1994; 56: 552–559.PubMedCrossRefGoogle Scholar
  95. 95.
    Schwarzbaur JE. Identification of the fibronectin sequences required for assembly of a fibrillar matrix. J Cell Biol 1991; 113: 1463–1473.CrossRefGoogle Scholar
  96. 96.
    Nagai T, Yamakawa N, Aota S, Yamada SS, Akiyama SK, Olden K, Yamada KM. Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly. J Cell Biol 1991; 114: 1295–1305.PubMedCrossRefGoogle Scholar
  97. 97.
    Iwamoto Y, Robey FA, Graf J, Sasaki M, Kleinman HK, Yamada Y, Martin GR. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 1987; 238: 1132–1134.PubMedCrossRefGoogle Scholar
  98. 98.
    McCarthy JB, Skubitz AP, Palm SL, Furcht LT. Metastasis inhibition of different tumor types by purified laminin fragments and a heparin-binding fragment of fibronectin. J Natl Cancer Inst 1988; 80 (2): 108–116.PubMedCrossRefGoogle Scholar
  99. 99.
    Humphries MJ, Olden K, Yamada KM. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 1986; 233: 467–469.PubMedCrossRefGoogle Scholar
  100. 100.
    Skubitz APN, Grossman PE, Wayner EA, Bast RC Jr. Role of integrin in the interaction of ovarian carcinoma cell lines with laminin. Mol Biol Cell 1993; 4: 283a.Google Scholar
  101. 101.
    Strobel T, Cannistra SA. 01-Integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol 1999; 73: 362–367.PubMedCrossRefGoogle Scholar
  102. 102.
    Bridges JE, Englefield P, Boyd IE, Roche WR, Thomas EJ. Expression of integrin adhesion molecules in normal ovary and epithelial ovarian tumors. Int J Gynecol Cancer 1995; 5: 187–192.PubMedCrossRefGoogle Scholar
  103. 103.
    Bartolazzi A, Kaczmarek J, Nicolo G, Risso AM, Tarone G, Rossino P, Defilippi P, Castellani P. Localization of the a3ß1 integrin in some common epithelial tumors of the ovary and in normal equivalents. Anticancer Res 1993; 13: 1–12.PubMedGoogle Scholar
  104. 104.
    Bottini C, Miotti S, Fiorucci S, Facheris P, Menard S, Colnaghi MI. Polarization of the a6ß4 integrin in ovarian carcinomas. Int J Cancer 1993; 54: 261–267.PubMedCrossRefGoogle Scholar
  105. 105.
    Kumano K, Schiller B, Hjelle JT, Moran J. Effects of osmotic solutes on fibronectin mRNA expression in rat peritoneal mesothelial cells. Blood Purif 1996; 14 (2): 165–169.PubMedCrossRefGoogle Scholar
  106. 106.
    Yen CJ, Fang CC, Chen YM, Lin RH, Wu KD, Lee PH, Tsai TJ. Extracellular matrix proteins modulate human peritoneal mesothelial cell behavior. Nephron 1997; 75(2): 188195.Google Scholar
  107. 107.
    Harvey W, Amlot PL. Collagen production by human mesothelial cells in vitro. J Pathol 1983; 139 (3): 337–347.PubMedCrossRefGoogle Scholar
  108. 108.
    Perfumo F, Altieri P, Degl’Innocenti ML, Ghiggeri GM, Caridi G, Trivelli A, Gusmano R. Effects of peritoneal effluents on mesothelial cells in culture: cell proliferation and extracellular matrix regulation. Nephrol Dialysis Transplant 1986; 11 (9): 1803–1809.CrossRefGoogle Scholar
  109. 109.
    Cannistra SA, Ottensmeier C, Niloff J, Orta B, DiCarlo J. Expression and function of 131 and avß3 integrins in ovarian cancer. Gynecol Oncol 1995; 58: 216–225.PubMedCrossRefGoogle Scholar
  110. 110.
    Niedbala MJ, Crickard K, Bernacki RJ. Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. Exp Cell Res 1985; 160: 499–513.PubMedCrossRefGoogle Scholar
  111. 111.
    Catterall JB, Gardner MJ, Jones LMH, Thompson GA, Turner GA. A precise, rapid and sensitive in vitro assay to measure the adhesion of ovarian tumour cells to peritoneal mesothelial cells. Cancer Lett 1984; 87: 199–203.CrossRefGoogle Scholar
  112. 112.
    Rieppi M, Vergani V, Gatto C, Zanetta G, Allavena P, Taraboletti G, Giavazzi R. Mesothelial cells induce the motility of human ovarian carcinoma cells. Int J Cancer 1999; 80: 303–307.PubMedCrossRefGoogle Scholar
  113. 113.
    Bockholt SM, Burridge K. Cell spreading on extracellular matrix proteins induces tyrosine phosphorylation of tensin. J Biol Chem 1993; 268: 14565–14567.PubMedGoogle Scholar
  114. 114.
    Burridge K, Turner CE, Romer LH. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 1992; 119: 893–903.PubMedCrossRefGoogle Scholar
  115. 115.
    Petch LA, Bockholt SM, Bouton A, Parsons JT, Burridge K. Adhesion-induced tyrosine phosphorylation of the p130 src substrate. J Cell Sci 1995; 108: 1371–1379.PubMedGoogle Scholar
  116. 116.
    Skubitz KM, Ahmed K, Campbell KD, Skubitz APN. CD50 (ICAM-3) is phosphoryaated on tyrosine kinase activity in human neutrophils. J Immunol 1995; 154: 2888–2895.PubMedGoogle Scholar
  117. 117.
    Skubitz KM, Campbell KD, Ahmed K, Skubitz APN. CD66 family members are associated with tyrosine kinase activity in human neutrophils. J Immunol 1995; 155: 53825390.Google Scholar
  118. 118.
    Skubitz KM, Campbell KD, Iida J, Skubitz APN. CD63 associates with tyrosine kinase activity and CDI1JCD18, and transmits an activation signal in neutrophils. J Immunol 1996; 157: 3617–3626.PubMedGoogle Scholar
  119. 119.
    Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinase. Science 1991; 254: 1016–1019.PubMedCrossRefGoogle Scholar
  120. 120.
    Cinek T, Horejsi V. The nature of large noncovalent complexes containing glycosylphosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J Immunol 1992; 149: 2262–2270.PubMedGoogle Scholar
  121. 121.
    Drdberovâ L, Amoui M, Drüber P. Thy- 1-mediated activation of rat mast cells: the role of Thy-1 membrane microdomains. Immunology 1996; 87: 141–148.Google Scholar
  122. 122.
    Skubitz APN, Campbell KD, Goueli S, Skubitz KM. Association of ßl integrin with protein kinase activity in large detergent resistant complexes. FEBS Letters 1998; 426: 386–391.PubMedCrossRefGoogle Scholar
  123. 123.
    Vleminckx K, Kemler R. Cadherins and tissue formation: integrating adhesion and signaling. BioEssays 1999; 21: 211–220.PubMedCrossRefGoogle Scholar
  124. 124.
    Steinberg MS, McNutt PM. Cadherins and their connections: adhesion junctions have broader functions. Cuff Opin Cell Biol 1999; 11: 554–560.CrossRefGoogle Scholar
  125. 125.
    No V, Chastre E, Bruyneel E, Gespach C, Mareel M. Extracellular regulation of cancer invasion: the E-cadherin-catenin and other pathways. Biochem Soc Symp 1999; 65: 43–62.Google Scholar
  126. 126.
    Higgins JM, Mandlebrot DA, Shaw SK, Russell GJ, Murphy EA, Chen YT, Nelson WJ, Parker CM, Brenner MB. Direct and regulated interaction of integrin alphaEbeta7 with Ecadherin. J Cell Biol 1998; 140: 197–210.PubMedCrossRefGoogle Scholar
  127. 127.
    Birchmeier W. E-cadherin as a tumor (invasion) suppressor gene. BioEssays 1995; 17: 9799.CrossRefGoogle Scholar
  128. 128.
    Dara E, Leblanc M, Walker-Combrouze F, Bringuier A-F, Madelenat P, Scoazec JY. Expression of cadherins and CD44 isoforms in ovarian endometrial cysts. Human Reprod 1998; 13 (5): 1346–1352.CrossRefGoogle Scholar
  129. 129.
    Dara E, Scoazec J-Y, Walker-Combrouze F, Mlika-Cabanne N, Feldmann G, Madelenat P, Potet F. Expression of cadherins in benign, borderline, and malignant ovarian epithelial tumors: A clinicopathologic study of 60 cases. Hum Pathol 1997; 28: 922–928.CrossRefGoogle Scholar
  130. 130.
    Ong A, Maines-Bandiera SL, Roskelley CD, Auersperg N. An ovarian adenocarcinoma line derived from SV40/E-cadherin-transfected normal human ovarian surface epithelium. Int J Cancer 2000; 85: 430–437.PubMedCrossRefGoogle Scholar
  131. 131.
    Maines-Bandiera SL, Auersperg N. Increased E-cadherin expression in ovarian surface epithelium: an early step in metaplasia and dysplasia? Int J Gynecol Pathol 1997; 16: 250255.Google Scholar
  132. 132.
    Sundfeldt K, Piontkewitz Y, Ivarsson K, Nilsson O, Hellberg P, Bronnstrom M, Janson PO, Enerboeck S, Hedin L. E-cadherin expression in human epithelial ovarian cancer and normal ovary. Int J Cancer 1997; 74: 275–280.PubMedCrossRefGoogle Scholar
  133. 133.
    Wong AST, Maines-Bandiera SL, Rosen B, Wheelock MJ, Johnson KR, Leung PCK, Roskelley CD, Auersperg N. Constitutive and conditional cadherin expression in cultured human ovarian surface epithelium: influence of family history of ovarian cancer. Int J Cancer 1999; 81: 180–188.PubMedCrossRefGoogle Scholar
  134. 134.
    Davies BR, Worsley SD, Ponder BAJ. Expression of E-cadherin, a-catenin and ß-catenin in normal ovarian surface epithelium and epithelial ovarian cancers. Histopath 1998; 32: 69–80.CrossRefGoogle Scholar
  135. 135.
    Dara E, Scoazec J-Y. Expression of cadherins and CD44 proteins in ovarian tumors: Physiopathology and diagnosis interest. Eur J Obst Gynecol Reprod Biol 1999; 86: 13 1133.Google Scholar
  136. 136.
    Veatch AL, Carson LF, Ramakrishnan S. Differential expression of the cell-cell adhesion molecule E-cadherein ascites and solid human ovarian cancer cells. Int J Cancer 1994; 58: 393–399.PubMedCrossRefGoogle Scholar
  137. 137.
    Ashkenas J, Damsky CH, Bissell MJ, Werb Z. Integrins, signaling, and the remodeling of the extracellular matrix. In: Integrins: Molecular and Biological Responses to the Extracellular Matrix, Cheresh DA, Mecham RP, eds. San Diego, Academic Press, pp. 79109, 1994.Google Scholar
  138. 138.
    Campo E, Merino MJ, Tavassoli FA, Charonis AS, Stetler-Stevenson WG, Liotta LA. Evaluation of basement membrane components and the 72 kDa type IV collagenase in serous tumors of the ovary. Am J Surg Pathol 1992; 16: 500–507.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Amy P. N. Skubitz
    • 1
  1. 1.Department of Laboratory Medicine and PathologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations