Skip to main content

Homeobox Gene Expression in Ovarian Cancer

  • Chapter
Ovarian Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 107))

Abstract

Homeobox genes control embryogenesis in both vertebrates and invertebrates. They are named after the highly conserved 180 bp sequence, the homeobox. There are two families of vertebrate homeobox genes. The first is the Hox genes and members of this family are clustered on the chromosome. These genes are classified according to sequence similarities as well as their position within the cluster[1]. The second group is divergent and members of this group are found throughout the genome. In invertebrates, the cluster is known as the homeotic complex, or HOM-C. The vertebrate family of homeobox genes is large; greater than 0.2% of the estimated 100,000 genes per genome may contain a homeobox with only a small number residing in the Hox cluster[2]. The HOM-C and Hox complexes contain homologous genes that are similar in both sequence and function in different organisms. These genes dictate body design in all embryos. The effects of vertebrate HOX genes can be ascertained from their expression pattern during mouse development and from the phenotype of mice with a targeted deletion, disruption or overexpression of a specific Hox gene [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGinnis, W. and R. Krumlauf, Homeobox genes and axial patterning. Cell 1992; 68 (2): 283–302.

    Article  CAS  PubMed  Google Scholar 

  2. Stein, S., et al., Checklist: vertebrate homeobox genes. Mech Dev 1996; 55 (1): 91108.

    Article  Google Scholar 

  3. Taylor, H.S., G.B. Vanden Heuvel, and P. Igarashi, A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 1997; 57 (6): 1338–45.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis, E.B., A gene complex controlling segmentation in Drosophila. Nature, 1978; 276 (5688): 565–70.

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez-Herrero, E., et al., Genetic organization of Drosophila bithorax complex. Nature 1985; 313 (5998): 108–13.

    Article  CAS  PubMed  Google Scholar 

  6. McGinnis, W., et al., A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 1984; 37 (2): 403–8.

    Article  CAS  PubMed  Google Scholar 

  7. Scott, M.P. and A.J. Weiner, Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci U S A 1984; 81 (13): 4115–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kissinger, C.R., et al., Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell 1990; 63 (3): 579–90.

    Article  CAS  PubMed  Google Scholar 

  9. Qian, Y.Q., et al., The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors [published erratum appears in Cell 1990 May 4;61(3):548]. Cell 1989; 59 (3): 573–80.

    Article  CAS  PubMed  Google Scholar 

  10. Wolberger, C., et al., Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 1991; 67 (3): 517–28.

    Article  CAS  PubMed  Google Scholar 

  11. Manak, J.R. and M.P. Scott, A class act: conservation of homeodomain protein functions. Dev Suppl 1994: 61–77.

    Google Scholar 

  12. Duboule, D. and G. Morata, Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994; 10 (10): 358–64.

    Article  CAS  PubMed  Google Scholar 

  13. Ruddle, F.H., et al., Evolution of chordate hox gene clusters. Ann N Y Acad Sci 1999; 870: 238–48.

    Article  CAS  PubMed  Google Scholar 

  14. Scott, M.P., Vertebrate homeobox gene nomenclature [letter]. Cell 1992; 71 (4): 5513.

    Article  Google Scholar 

  15. Duboule, D. and P. Dolle, The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 1989; 8 (5): 1497–505.

    CAS  PubMed  Google Scholar 

  16. Graham, A., N. Papalopulu, and R. Krumlauf, The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 1989; 57 (3): 367–78.

    Article  CAS  PubMed  Google Scholar 

  17. Lumsden, A. and R. Krumlauf, Patterning the vertebrate neuraxis. Science 1996; 274 (5290): 1109–15.

    Article  CAS  PubMed  Google Scholar 

  18. lzpisua-Belmonte, J.C., et al., Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. EMBO J 1991; 10 (8): 2279–89.

    Google Scholar 

  19. Davis, A.P. and M.R. Capecchi, A mutational analysis of the 5’ HoxD genes: dissection of genetic interactions during limb development in the mouse. Development 1996; 122 (4): 1175–85.

    CAS  PubMed  Google Scholar 

  20. Le Mouellic, H., Y. Lallemand, and P. Brulet, Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 1992; 69 (2): 251–64.

    Article  PubMed  Google Scholar 

  21. Lufkin, T., et al., Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 1992; 359 (6398): 835–41.

    Article  CAS  PubMed  Google Scholar 

  22. Muragaki, Y., et al., Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13 [see comments]. Science 1996; 272 (5261): 548–51.

    Article  CAS  PubMed  Google Scholar 

  23. Dolle, P., et al., Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 1993; 75 (3): 431–41.

    Article  CAS  PubMed  Google Scholar 

  24. Mortlock, D.P. and J.W. Innis, Mutation of HOXA13 in hand-foot-genital syndrome [see comments]. Nat Genet 1997; 15 (2): 179–80.

    Article  CAS  PubMed  Google Scholar 

  25. Warot, X., et al., Gene dosage-dependent effects of the Hoxa-13 and Hoxd- 13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 1997; 124 (23): 4781–91.

    CAS  PubMed  Google Scholar 

  26. Devriendt, K., et al., Haploinsufficiency of the HOXA gene cluster, in a patient with hand-foot-genital syndrome, velopharyngeal insufficiency, and persistent patent Ductus botalli [letter]. Am J Hum Genet 1999; 65 (1): 249–51.

    Article  CAS  PubMed  Google Scholar 

  27. Cunha, G.R., Stromal induction and specification of morphogenesis and cytodifferentiation of the epithelia of the Mullerian ducts and urogenital sinus during development of the uterus and vagina in mice. J Exp Zool 1976; 196 (3): 361–70.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor, H.S., et al., HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest 1998; 101 (7): 1379–84.

    CAS  PubMed  Google Scholar 

  29. Taylor, H.S., et al., Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocrinol Metab 1999; 84 (3): 1129–35.

    Article  CAS  PubMed  Google Scholar 

  30. Satokata, I., G. Benson, and R. Maas, Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature 1995; 374 (6521): 460–3.

    Article  CAS  PubMed  Google Scholar 

  31. Small, K.M. and S.S. Potter, Homeotic transformations and limb defects in Hox All mutant mice. Genes Dev 1993; 7 (12A): 2318–28.

    Article  CAS  PubMed  Google Scholar 

  32. Hsieh-Li, H.M., et al., Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 1995; 121 (5): 1373–85.

    CAS  PubMed  Google Scholar 

  33. Godwin, A.R. and M.R. Capecchi, Hoxc13 mutant mice lack external hair. Genes Dev 1998; 12 (1): 11–20.

    Article  CAS  PubMed  Google Scholar 

  34. De Vita, G., et al., Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer 1993; 6: 887–93.

    Article  Google Scholar 

  35. Vider, B.Z., et al., Human colorectal carcinogenesis is associated with deregulation of homeobox gene expression. Biochem Biophys Res Commun 1997; 232 (3): 742–8.

    Article  CAS  PubMed  Google Scholar 

  36. Redline, R.W., et al., Expression of AbdB-type homeobox genes in human tumors. Lab Invest 1994; 71 (5): 663–70.

    CAS  PubMed  Google Scholar 

  37. Cillo, C., et al., HOX gene expression in normal and neoplastic human kidney. Int J Cancer 1992; 51 (6): 892–7.

    Article  CAS  PubMed  Google Scholar 

  38. Anbazhagan, R. and V. Raman, Homeobox genes: molecular link between congenital anomalies and cancer. Eur J Cancer 1997; 33 (4): 635–7.

    Article  CAS  PubMed  Google Scholar 

  39. Magli, M.C., C. Largman, and H.J. Lawrence, Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol 1997; 173 (2): 168–77.

    Article  CAS  PubMed  Google Scholar 

  40. Deguchi, Y., J.F. Moroney, and J.H. Kehrl, Expression of the HOX-2.3 homeobox gene in human lymphocytes and lymphoid tissues. Blood 1991; 78 (2): 445–50.

    CAS  PubMed  Google Scholar 

  41. Ziemin-van der Poel, S., et al., Identification of a gene, MLL, that spans the breakpoint in 11g23 translocations associated with human leukemias. Proc Natl Acad Sci USA 1991; 88 (23): 10735–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yu, B.D., et al., Altered Hox expression and segmental identity in M11-mutant mice. Nature, 1995 378 (6556): 505–8.

    Article  CAS  PubMed  Google Scholar 

  43. Borrow, J., et al., The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996; 12 (2): 159–67.

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura, T., et al., Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12 (2): 154–8.

    Article  CAS  PubMed  Google Scholar 

  45. Weis, K., et al., Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994; 76 (2): 345–56.

    Article  CAS  PubMed  Google Scholar 

  46. Yergeau, D.A., et al., Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AMLI-ETO fusion gene. Nat Genet 1997; 15 (3): 303–6.

    Article  CAS  PubMed  Google Scholar 

  47. Celetti, A., et al., Characteristic patterns of HOX gene expression in different types of human leukemia. Int J Cancer 1993; 53 (2): 237–44.

    Article  CAS  PubMed  Google Scholar 

  48. Greenlee, R.T., et al., Cancer statistics, 2000. CA Cancer J Clin; 2000; 50 (1): 7–33.

    Article  CAS  PubMed  Google Scholar 

  49. Bast, R.C., Jr., et al., A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 1983; 309 (15): 883–7.

    Article  PubMed  Google Scholar 

  50. Jacobs, I. and R.C. Bast, Jr., The CA 125 tumour-associated antigen: a review of the literature. Hum Reprod 1989; 4 (1): 1–12.

    Article  CAS  PubMed  Google Scholar 

  51. Mutch, D.G., Molecular characteristics of cancers: the way of the future?. Gynecol Oncol 2000; 77 (1): 8–10.

    Article  CAS  PubMed  Google Scholar 

  52. Scott, M.P., J.W. Tamkun, and G.W.d. Hartzell, The structure and function of the homeodomain. Biochim Biophys Acta 1989; 989 (1): 25–48.

    CAS  PubMed  Google Scholar 

  53. Holland, P.W. and B.L. Hogan, Expression of homeo box genes during mouse development: a review. Genes Dev 1988; 2 (7): 773–82.

    Article  CAS  PubMed  Google Scholar 

  54. Redline, R.W., et al., Homeobox genes and congenital malformations. Lab Invest 1992; 66 (6): 659–70.

    CAS  PubMed  Google Scholar 

  55. Beddington, R.S., A.W. Puschel, and P. Rashbass, Use of chimeras to study gene function in mesodermal tissues during gastrulation and early organogenesis. Ciba Found Symp 1992; 165: 61–74.

    CAS  PubMed  Google Scholar 

  56. Bagot, C.N., P.J. Troy, and H.S. Taylor, Alteration of maternal HoxaI0 expression by in vivo gene transfection affects implantation. Gene Ther 2000; 7 (16): 1378–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pando, S.M., Taylor, H.S. (2002). Homeobox Gene Expression in Ovarian Cancer. In: Ovarian Cancer. Cancer Treatment and Research, vol 107. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3587-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3587-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3589-5

  • Online ISBN: 978-1-4757-3587-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics