Survival Analysis Methods in Cancer Studies

  • John P. Klein
Part of the Cancer Treatment and Research book series (CTAR, volume 113)


In many cancer studies we are interested the survival experience of the patient. This survival experience may be the time until response to therapy, the duration of remission, the length of time free of disease or toxic effects of the treatment or simply the overall survival experience of the patient. We are interested in estimation of the distribution of these times, in comparing these outcomes between two or more treatments, or in finding models for these outcomes that allow us to predict outcome based on a particular patient profile.


Hazard Rate Cumulative Incidence Cumulative Incidence Function Accelerate Failure Time Model Cumulative Incidence Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalen, O. O. and Johansen, S. (1978). An Empirical Transition Matrix For Nonhomogeneous Markov Chains Based On Censored Observations. Scandinavian Journal Of Statistics, 5, 141–150.Google Scholar
  2. Aalen, O. O. (1989). A Linear Regression Model For The Analysis Of Life Times. Statistics In Medicine, 8, 907–925.PubMedCrossRefGoogle Scholar
  3. Aalen, O. O. (1992). Further Results On The Non-Parametric Linear Regression Model In Survival Analysis. Statistics In Medicine, 12, 1569–1583.CrossRefGoogle Scholar
  4. Andersen, P. K., Borgan, 0., Gill, R. D., and Keiding, N. (1982). Linear Non-Parametric Tests For Comparison Of Counting Processes, With Application To Censored Survival Data (With Discussion). International Statistical Review, 50, 219–258. Amendment: (1984), 52, 225.Google Scholar
  5. Andersen, P. K., Borgan, 0., and Gill, R. D. and Keiding, N. (1993). Statistical Models Based On Counting Processes. Springer-Verlag, New York.CrossRefGoogle Scholar
  6. Andersen, P. K., Klein, J. P. and Zhang, M. J. (1999). Testing For Center Effects In Multicenter Survival Studies: A Monte Carlo Comparison Of Fixed And Random Effects. Statistics In Medicine,18 1489–500.Google Scholar
  7. Bandeen-Roche, K. J. and Liange, K. Y. (1996). Modeling Failure-Time Associations In Data With Multiple Levels Of Clustering. Biometrika, 83, 29–39.CrossRefGoogle Scholar
  8. Borgan, 0. and Liestol, K. (1990). A Note On Confidence Intervals And Bands For The Survival Curve Based On Transformations. Scandinavian Journal Of Statistics, 17, 35–41.Google Scholar
  9. Brookmeyer, R. and Crowley, J. J. (1982a). A Confidence Interval For The Median Survival Time. Biometrics, 38, 29–41.CrossRefGoogle Scholar
  10. Brookmeyer, R. and Crowley, J. J. (1982b). A K-Sample Median Test for Cen- sored Data. Journal of the American Statistical Association, 77: 433–440.Google Scholar
  11. Commenges, D. and Andersen, P. K. (1995). Score Test Of Homogeneity For Survival Data. Lifetime Data Analysis, 1, 145–160.PubMedCrossRefGoogle Scholar
  12. Copelan, E. A., Biggs, J. C., Thompson, J. M., Crilley, P., Szer, J., Klein, J. P., Kapoor, N., Avalos, B. R., Cunningham, I., Atkinson, K., Downs, K., Harmon, G. S., Daly, M. B., Brodsky, I., Bulova, S. I., and Tutschka, P. J. (1991). Treatment For Acute Meyelocytic Leukemia With Allogeneic Bone Marrow Transplantation Following Preparation With Bu/Cy. Blood, 78, 838843.Google Scholar
  13. Cox, D. R. (1972). Regression Models And Life-Tables (With Discussion). Journal Of The Royal Statistical Society, B34, 187–220.Google Scholar
  14. Craddock C., Szydlo R. M., Klein J. P., Dazzi F., Olavarria E., van Rhee F., Pocock, C., Cwynarski K., Apperley J. F., Goldman J. M. (2000). Estimating leukemia-free survival after allografting for chronic myeloid leukemia: a new method that takes into account patients who relapse and are restored to complete remission. Blood, 96 (1), 86–90.PubMedGoogle Scholar
  15. Fleming, T. R. and Harrington, D. P. (1991). A Class Of Hypothesis Tests For One And Two Samples Of Censored Survival Data. Communications In Statistics, 10, 763–794.Google Scholar
  16. Gehan, E. A. (1965). A Generalized Wilcoxon Test For Comparing Arbitrarily Singly Censored Samples. Biometrika, 52, 203–223.PubMedGoogle Scholar
  17. Gooley, T. A., Leisenring, W., Crowley, J. and Storer, B. (1999). Estimation Of Failure Probabilities In The Presence Of Competing Risks: New Representations Of Old Estimators. Statistics in Medicine, 18, 695–706.PubMedCrossRefGoogle Scholar
  18. Gray, R. J. (1988). A Class Of K-Sample Tests For Comparing The Cumulative Incidence Of A Competing Risk. Annals Of Statistics, 16, 1141–1154.CrossRefGoogle Scholar
  19. Greenwood, M. (1926). The Natural Duration Of Cancer. In Reports On Public Health And Medical Subjects, 33, 1–26. His Majesty’s Stationery Office, London.Google Scholar
  20. Hall, W. J. and Weliner, J. A. (1980). Confidence Bands ForA Survival Curve From Censored Data. Biometrika, 67, 133–143.CrossRefGoogle Scholar
  21. Hougaard P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag, New York.CrossRefGoogle Scholar
  22. Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis Of Failure Time Data. John Wiley And Sons, New York.Google Scholar
  23. Kaplan, E. L. and Meier, R (1958). Non-Parametric Estimation From Incomplete Observations. Journal Of The American Statistical Association, 53, 457–481.CrossRefGoogle Scholar
  24. Kardaun, O. (1983). Statistical Analysis Of Male Larynx-Cancer Patients—A Case Study. Statistical Neerlandica, 37, 103–126.CrossRefGoogle Scholar
  25. Keiding, N., Klein, J. P. and Horowitz, M. M. (2001). Multistate Models And Outcome Prediction In Bone Marrow Transplatation. Statistics In Medicine, 20, 1871–1885.PubMedCrossRefGoogle Scholar
  26. Klein, J. P. and Moeschberger, M. L. (1987). Independent Or Dependent Competing Risks: Does It Make A Difference? Communications In Statistics-Simulation, 16 (2), 507–533.CrossRefGoogle Scholar
  27. Klein, J. P. (1992). Semiparametric Estimation Of Random Effects Using The Cox Model Based On The EM Algorithm. Biometrics, 48, 795–806.PubMedCrossRefGoogle Scholar
  28. Klein, J. P., Keiding, N., and Copelan, E. A. (1994). Plotting Summary Predictions In Multistate Survival Models: Probability Of Relapse And Death In Remission For Bone Marrow Transplant Patients. Statistics In Medicine, 12, 2315–2332.CrossRefGoogle Scholar
  29. Klein, J. P. and Qian, C. (1996). Modeling Multistate Survival Illustrated In Bone Marrow Transplantation. Proceedings Of The Biometrics Section Of The American Statistical Society, 93–102.Google Scholar
  30. Klein, J. P. and Moeschberger, M. L. (1997). Survival Analysis, Techniques For Censored and Truncated Survival Data. Springer-Verlag, New York.Google Scholar
  31. Klein J. R, Keiding N, Shu Y, Szydlo R. M., Goldman J. M. (2000a). Summary Curves For Patients Transplanted For Chronic Myeloid Leukaemia Salvaged By A Donor Lymphocyte Infusion: The Current Leukaemia-Free Survival Curve. British Journal Of Haematology,109(1) 148–152.Google Scholar
  32. Klein, J. R, Szydlo, R. M., Craddock, C. and Goldman, J. M. (2000b). Estimation Of Current Leukemia-Free Survival Following Donor Lymphocyte Infusion Therapy For Patients With Leukemia Who Relapse After Allografting: Application Of A Multistate Model. Statistics In Medicine, 19, 3005–3016.PubMedCrossRefGoogle Scholar
  33. Lagakos, S. W., Barraj, L. M., and Degruttola, V. (1988). Nonparametric Analysis Of Truncated Survival Data, With Application To AIDS. Biometrika, 75, 515–523.CrossRefGoogle Scholar
  34. Lin, D. Y, and Ying, Z. (1994). Semiparametric Analysis Of The Additive Risk Model. Biometrika, 81, 61–73.CrossRefGoogle Scholar
  35. McKeague, I. W. (1988). Asymptotic Theory For Weighted Least Squares Estimators In Aalen’s Additive Risk Model. Contemporary Mathematics, 80, 139–152.CrossRefGoogle Scholar
  36. Nair, V. N. (1984). Confidence Bands For Survival Functions With Censored Data: A Comparative Study. Technometrics, 14, 265–275.CrossRefGoogle Scholar
  37. Nielsen, G. G., Gill, R. D., Andersen, P. K. and Sorensen, T. I. A. (1992). A Counting Process Approach To Maximum Likelihood Estimation In Frailty Models. Scandinavian Journal Of Statistics, 19, 25–43.Google Scholar
  38. Parner, E. (1998). Asymptotic Theory For The Correlated Frailty Model. Annal of Statistics, 26, 183–214.CrossRefGoogle Scholar
  39. Pepe, M. S. and Fleming, T. R. (1989). Weighted Kaplan-Meier Statistics: A Class Of Distance Tests For Censored Survival Data. Biometrics, 45, 457507.Google Scholar
  40. Pepe, M. S. and Mori, M. (1993a). Kaplan-Meier, Marginal Or Conditional Probability Curves In Summarizing Competing Risks Failure Time Data? Statistics in Medicine, 12, 737–751.PubMedCrossRefGoogle Scholar
  41. Pepe, M. S., Longton, G., Pettinger, Mori, M., Fisher, L. D. and Storb, R. (1993b). Summarizing Data On Survival, Relapse, and Chronic Graft-VersusHost Disease After Bone Marrow Transplantation: Motivation For And Description Of New Methods. British Journal of Haematolgy, 83, 602–7.Google Scholar
  42. Peto, R. and Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures (With Discussion). Journal Of The Royal Statistical Society, A, 135, 185–206.Google Scholar
  43. Petersen, J. H. (1998). An Additive Fraility Model For Correlated Life Times. Biometrics, 54, 646–661.PubMedCrossRefGoogle Scholar
  44. Tarone, R. E. and Ware, J. H. (1977). On Distribution-Free Tests For Equality For Survival Distributions. Biometrika, 64, 156–160.CrossRefGoogle Scholar
  45. Turnbull, B. W. (1974). Nonparametric Estimation Of A Survivorship Function With Doubly Censored Data. Journal Of The American Statistical Association, 69, 169–173.CrossRefGoogle Scholar
  46. Turnbull, B. W. (1976). The Empirical Distribution Function With Arbitrarily Grouped, Censored And Truncated Data. Journal Of The Royal Statistical Society, B, 38, 290–295.Google Scholar
  47. Zhang, M. J. (2002). Cox Proportional Hazard Regression For Survival Analysis In Cancer Research. This VOLUME.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • John P. Klein
    • 1
  1. 1.Medical College of WisconsinMilwaukeeUSA

Personalised recommendations