Average-Cost Optimality of a Base-Stock Policy for a Multi-Product Inventory Model with Limited Storage

  • Dirk Beyer
  • Suresh P. Sethi
  • Ramaswamy Sridhar
Part of the Advances in Computational Management Science book series (AICM, volume 4)


We consider a stochastic multi-product inventory model with a warehousing constraint with the objective of minimizing the expected long-run average cost. Using the vanishing discount approach, a dynamic programming equation and the corresponding verification result are established. The structure of optimal policies is analyzed when ordering cost of the commodities is linear and the inventory/backlog cost is convex. The optimal policy is shown to be a base-stock policy, in contrast to a modified base-stock policy optimal in the discounted cost version of the problem.


Optimal Policy Order Quantity Polynomial Growth Discount Cost Dynamic Programming Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aubin, J. P. (1979). Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam, The Netherlands.Google Scholar
  2. [2]
    Beyer, D. and S. P. Sethi (1997). Average Cost Optimality in In-ventory Models with Markovian Demands. J.O.T.A., 92, No. 3, pp. 497–526.CrossRefGoogle Scholar
  3. [3]
    Beyer, D. and S. P. Sethi (1999). The Classical Average-Cost In-ventory Models of Iglehart (1963) and Veinott and Wagner (1965) Revisited. J.O.T.A., 101, No. 3, pp. 523–555.CrossRefGoogle Scholar
  4. [4]
    Beyer, D., S. P. Sethi and R. Sridhar (2001). Stochastic Multi-Product Inventory Models with Limited Storage. Working Paper, University of Texas at Dallas, Richardson, Texas; forthcoming in J.O.T.A., 111, No. 3, (forthcoming in December 2001).Google Scholar
  5. [5]
    Beyer, D., S. P. Sethi and M. Taksar (1998). Inventory Models with Markovian Demands and Cost Functions of Polynomial Growth. J.O.T.A., 98, No. 2, pp. 281–323.CrossRefGoogle Scholar
  6. [6]
    Girlich, H.-J., H.-U. Kiienle, and M. Miethe (1974). Approximation Optimaler Bestellstrategien bei Mehrproduktmodellen. In: Lager-haltungsmodelle: Neue Anwendungen, Erfahrungen und Erkennt-nisse. Berlin, Germany.Google Scholar
  7. [7]
    Gut, A. (1988). Stopped Random Walks — Limit Theorems and Applications. Springer-Verlag, New York.Google Scholar
  8. [8]
    Herbein, A. (1981). Kostenoptimale Bestellpolitiken im Mehr-Produkt-Lager. Ph.D. Thesis, University of Augsburg, Germany.Google Scholar
  9. [9]
    Hochstädter, D. (1971). The Stationary Solution of Multi-Product Inventory Models. Colloquia Mathematica Societatis Janos Bolyen, 7th Inventory Control and Water Storage GYOR, Hungary.Google Scholar
  10. [10]
    Iglehart, D. (1963) Dynamic Programming and Stationary Analysis of Inventory Problems. Multistage Inventory Models and Tech-niques. Edited by Scarf, H. , H.-U. Gilford, and M. Shelly, Stanford University Press, Stanford, California, 1–31.Google Scholar
  11. [11]
    Ignall, E.J. (1966) Optimal Policies for Two Product Inventory Systems, with and without Setup Costs. Ph.D. Thesis, Graduate School, Cornell University, NY.Google Scholar
  12. [12]
    Ignall, E.J. , and A.F. Veinott. (1969) Optimality of Myopic In-ventory Policies for Several Substitute Products. Mgmt. Sei. 18, 284–304.CrossRefGoogle Scholar
  13. [13]
    Johnson, E.L. (1967). Optimality and Computation of (s, S) Policies in the Multi-Item Infinite Horizon Inventory Problem. Management Science, 13, No. 7, 475–491.CrossRefGoogle Scholar
  14. [14]
    Kalin, D. (1976). Optimalität von Verallgemeinerten ($,S)-Politiken bei Mehrproduktlagermodellen. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität zu Bonn, Germany.Google Scholar
  15. [15]
    Kalin, D. (1980). On the Optimality of (a, S) policies. MOR, 5, pp. 293–307.CrossRefGoogle Scholar
  16. [16]
    Kapuscinski, R. and S. Tayur (1996) A Capacitated Production-Inventory Model with Periodic Demand. Working Paper, Carnegie Mellon University, Pittsburgh, PA 15213.Google Scholar
  17. [17]
    Küenle, H.-U. (1986) Stochastische Spiele und Entscheidungsmodelle. Teubner Texte zur Mathematik, 89, Leipzig, Germany.Google Scholar
  18. [18]
    Pfeifer, A. (1981). Optimalitäseigenschaften von Mehrprodukt-Lagermodellen bei Stochastischem Bedarf. Ph.D. Thesis, TH Darmstadt, Germany.Google Scholar
  19. [19]
    Reining, H. J. (1979). Mehrproduktlager und Optimale (er, S)-Politiken. Ph.D. Thesis, TH Darmstadt, Germany.Google Scholar
  20. [20]
    Rockafellar, R.T. (1970) Convex Analysis. Princeton University Press, Princeton, New Jersey.Google Scholar
  21. [21]
    Ross, 1970. Cited: page 253, Case (i), last lineGoogle Scholar
  22. [22]
    Veinott, A. (1965) Optimal Policy for a Multi-Product, Dynamic Nonstationary Inventory Problem. Mgmt. Sei., 12, pp. 206–222.CrossRefGoogle Scholar
  23. [23]
    Veinott, A. and H. Wagner (1965) Computing Optimal (s, S) policies, Mgmt. Sei., 11, pp. 525–552.CrossRefGoogle Scholar
  24. [24]
    Zheng, Y.S. (1991) A Simple Proof for Optimality of (s, S) Policies in Infinite-Horizon Inventory Systems. J. of Appl. Prob., 28, pp. 802–810.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Dirk Beyer
  • Suresh P. Sethi
  • Ramaswamy Sridhar

There are no affiliations available

Personalised recommendations