Skip to main content

Preparing the Input

  • Chapter
Discrete-Event Simulation

Part of the book series: Springer Series in Operations Research ((ORFE))

  • 1771 Accesses

Abstract

The modeling representations of Chapter 2 and the programming concepts of Chapter 3 provide us with the ability to create relatively sophisticated simulation models and executable programs, but only after we have identified all sources of stochastic variation, specified sampling distributions that characterize each source, and assign numerical values to the parameters of the distributions. This chapter addresses these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AbouRizk, S.M., D.W. Halpin, and J.R. Wilson (1994). Fitting Beta distributions based on sample data, Journal of Construction Engineering and Management, 120, 288–305.

    Article  Google Scholar 

  • Ahrens, J.H., and K.D. Kohrt (1981). Computer methods for efficient sampling from largely arbitrary statistical distributions, Computing, 26, 19–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Beckman, R.J., and G.L. Tietjen (1978). Maximum likelihood estimation for the Beta distribution, J. Statist. Comput. Simul., 7, 253–258.

    Article  MATH  Google Scholar 

  • Brockwell, P.J., and R.A. Davis (1991). Time Series: Theory and Methods, second edition, Springer-Verlag, New York.

    Book  Google Scholar 

  • Conover, W.J. (1999). Practical Nonparametric Statistics, third edition, Wiley, New York.

    Google Scholar 

  • Fielitz, B.D., and B.L. Myers (1975). Estimation of parameters in the Beta distribution, Decision Sciences, 6, 1–13.

    Article  Google Scholar 

  • Fishman, G.S. (1973). Concepts and Methods in Discrete Event Digital Simulation, Wiley, New York.

    Google Scholar 

  • Gnanadesikan, R., R.S. Pinkham, and L.P. Hughes (1967). Maximum likelihood estimation of the parameters of the Beta distribution from smallest order Statistics, Technometrics, 9, 607–620.

    Article  MathSciNet  MATH  Google Scholar 

  • Gnedenko, B.V., and I.N. Kovalenko (1989). Introduction to Queueing Theory, Birkhäuser, Boston.

    Book  Google Scholar 

  • Grigelionis, B.I. (1962). Accuracy of approximation of a superposition of renewal processes by a Poisson process, Litovskii Mathemalicheskiï Sbornik, II, (2), 135–143.

    MathSciNet  Google Scholar 

  • Johnson, N.L., S. Kotz, and N. Balakrishnan (1994a). Continuous Univariate Distributions, Volume I, second edition, Wiley, New York.

    MATH  Google Scholar 

  • Johnson, N.L., S. Kotz, and N. Balakrishnan (1994b). Continuous Univariate Distributions, Volume II, second edition, Wiley, New York.

    MATH  Google Scholar 

  • Kao, E.P.C., and S.-L. Chang (1988). Modeling time-dependent arrivals to service systems: a case in using a piecewise-polynomial rate function in a nonhomogeneous Poisson process, Man. Sci., 34, 1367–1379.

    Article  MathSciNet  MATH  Google Scholar 

  • Köllerstrom, J. (1974). Heavy traffic theory for queues with several servers. I, J. Appl. Prob., 11, 544–552.

    Article  Google Scholar 

  • Kuhl, M.E., J.R. Wilson, and M.A. Johnson (1997). Estimating and simulating Poisson processes having trends or multiple periodicities, IIE Transactions, 29, 201–211.

    Google Scholar 

  • Kulkarni, V.G. (1995). Modeling and Analysis of Stochastic Systems, Chapman and Hall, London.

    MATH  Google Scholar 

  • Law, A.M., and W.D. Kelton (1991). Simulation Modeling and Analysis, McGraw-Hill, New York.

    Google Scholar 

  • Lewis, P.A.W., and J. Shedler (1979). Simulation of nonhomogeneous Poisson process by thinning, Nav. Res. Logist. Quart., 26, 403–413.

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson, B.L., and M. Yamnitsky (1998). Input modeling tools for complex problems, 1998 Winter Simulation Conference Proceedings, D.J. Medeiros, E.F. Watson, J.S. Carson, and M.S. Manivannan, eds., Association for Computing Machinery, New York.AU: see editors note

    Google Scholar 

  • Ross, S.M. (1980). Introduction to Probability Models, Academic Press, New York.

    Google Scholar 

  • Wagner, M.A., and J.R. Wilson (1996). Using univariate Bézier distributions to model simulation input processes, IIE Transactions, 28, 699–711.

    Google Scholar 

  • Zacks, S. (1971). The Theory of Statistical Inference, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fishman, G.S. (2001). Preparing the Input. In: Discrete-Event Simulation. Springer Series in Operations Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3552-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3552-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2892-4

  • Online ISBN: 978-1-4757-3552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics