Thermal-Wave Fields in Spherical Coordinates

  • Andreas Mandelis

Abstract

This chapter begins with spherical thermal-wave fields generated by a point source, spatially spherically asymmetric distributions, as well as azimuthally symmetric sources. The experimentally important Gaussian photothermal source distribution is then examined in some detail in cases of optically opaque and absorbing spheres. Spherically symmetric sources and hollow spheres are then treated in the spirit of Theorem 7.1. Finally, the chapter closes with the derivation of thermal-wave fields in spherical cones.

Keywords

Heat Transfer Coefficient Green Function Spherical Coordinate Thermophysical Property Hollow Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (National Bureau of Standards Appl. Math. Ser. 55, Washington, DC, 1964).MATHGoogle Scholar
  2. P. S. Belton, R. H. Wilson, and A. M. Saffa, Anal. Chem. 59, 2378 (1987).CrossRefGoogle Scholar
  3. R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1965).MATHGoogle Scholar
  4. J. J. Freedman, R. M. Friedman, and H. R. Reichard, J. Phys. Chem. 84, 315 (1980).CrossRefGoogle Scholar
  5. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (English Translation) (A. Jeffrey, ed.) (Academic, Orlando, FL, 1980).Google Scholar
  6. R. N. Hall, J. Appl. Phys. 20, 925 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  7. J. D. Jackson, Classical Electrodynamics, 2nd Ed. (Wiley, New York, 1975).MATHGoogle Scholar
  8. J.-P. Monchalin, L. Bertrand, G. Rousset, and F. Lepoutre, J. Appl. Phys. 56, 190 (1984).ADSCrossRefGoogle Scholar
  9. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. I (McGraw-Hill, New York, 1953).MATHGoogle Scholar
  10. H. K. Wickramasinghe, Sci. Am. (Oct. 1989), p. 98.Google Scholar
  11. H. K. Wicramasinghe, J. Vac. Sci. Technol. A 8, 383 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Andreas Mandelis
    • 1
  1. 1.Department of Mechanical and Industrial Engineering, Photothermal and Optoelectronic Diagnostics LaboratoryUniversity of TorontoTorontoCanada

Personalised recommendations